

Weather Unit / Weather Sensor
WZ/S 1.1
WES/A 1.1

Intelligent Installation Systems

ABB

This manual describes the function of the Weather Unit WZ/S 1.1/
Weather Sensor WES/A 1.1.
Subject to changes and errors excepted.

Exclusion of liability:

Despite checking that the contents of this document match the hardware and software, deviations cannot be completely excluded. We therefore cannot accept any liability for this. Any necessary corrections will be inserted in new versions of the manual. Please inform us of any suggested improvements.

Contents

	Page
1 General	3
1.1 Product and functional overview	3
2 Device technology	4
2.1 Weather Unit	4
2.1.1 Technical data “Weather Unit”	4
2.1.2 Wiring diagram	5
2.1.3 Dimension drawing “Weather Unit”	5
2.2 Weather Sensor	6
2.2.1 Technical data “Weather Sensor”	6
2.2.2 Wiring diagram	7
2.2.3 Dimension drawing “Weather Sensor”	7
2.2.4 Exploded drawing “Weather Sensor”	8
2.2.5 Arrangement and designation of the sensors	8
2.3 Installation of the Weather Unit	9
2.4 Mounting and installation of the Weather Sensor	11
3 Commissioning	13
3.1 Overview	13
3.2 Parameters	14
3.2.1 Parameter window “General”	14
3.2.2 Parameter window “Sensors”	17
3.2.3 Parameter window “Date/Time”	18
3.2.3.1 Operating mode “Master (synchronising via sensor)”	19
3.2.3.2 Operating mode “Internal (synchronising via sensor)”	21
3.2.3.3 Operating mode “Slave (synchronising via bus)”	22
3.2.4 Parameter window “Logic 1”	23
3.2.5 Parameter window “Brightness right”	25
3.2.5.1 Parameter window “Brightness R. threshold 1”	27
3.2.5.2 Parameter window “Brightness R. threshold 1 output”	30
3.2.6 Parameter window “Twilight”	31
3.2.6.1 Parameter window “Twilight threshold 1”	32
3.2.7 Parameter window “Day/Night”	33
3.2.8 Parameter window “Temperature”	34
3.2.8.1 Parameter window “Temperature threshold 1”	35
3.2.9 Parameter window “Rain”	36
3.2.9.1 Parameter window “Rain threshold 1”	38
3.2.9.2 Parameter window “Rain threshold 1 output”	40
3.2.10 Parameter window “Wind speed”	41
3.2.10.1 Parameter window “Wind speed threshold 1”	42
3.2.11 Parameter window “Value memory 1”	43
3.2.11.1 Read out value memory	46

	Page
3.3 Communication objects	47
3.3.1 Brightness right	47
3.3.2 Brightness centre	49
3.3.3 Brightness left	49
3.3.4 Twilight	49
3.3.5 Day/Night	50
3.3.6 Temperature	51
3.3.7 Rain	52
3.3.8 Wind speed	53
3.3.9 Logic 1, 2, 3 and 4	54
3.3.10 Value memory	55
3.3.11 Date/Time (master)	57
3.3.12 Date/Time (slave)	57
3.3.13 General	58
4 Planning and application	60
4.1 Weather Unit	60
4.2 Weather Sensor	60
4.3 Description of the threshold value function	61
4.4 Planning example 1	62
Appendix	I
A.1 Scope of delivery Weather Unit	I
A.2 Scope of delivery Weather Sensor	I
A.3 Logic truth table	I
A.4 Overview wind speeds	II
A.5 Value table for communication object “Status byte – System”	III
A.6 Directory of drawings	IV
A.7 Directory of tables	VI
A.8 Index	VII
A.9 Ordering details Weather Unit WZ/S 1.1	VIII
A.10 Ordering details Weather Sensor WES/A 1.1	VIII
A.11 Notes	IX

1 General

The Weather Unit WZ/S 1.1 is an KNX modular installation device with a module width of 4 units. The device processes up to 8 independent weather data sources which are detected by the WES/A 1.1.

By recording the brightness level, it is possible to adapt the lighting and shading of rooms fully automatically to the individual needs of the user. Monitoring and security functions are referred to weather data. Shutters and sunblind's (awnings) can be retracted in the event of strong wind or skylights and fanlights can be closed when it starts to rain.

This manual provides you with detailed technical information about the Weather Unit, Weather Sensor and includes installation and programming and explains the use of the WZ/S 1.1 and WES/A 1.1 using examples.

This manual is divided into the following sections:

• Chapter 1	General
• Chapter 2	Device technology
• Chapter 3	Commissioning
• Chapter 4	Planning and application
•	Appendix

1.1 Product and functional overview

The Weather Unit WZ/S 4.1 is a DIN rail mounted modular installation device for installation in distribution boards. The connection to the bus is implemented via a Bus Connection Terminal on the front of the device. The assignment of the physical address as well as the parameter settings is carried out with ETS 2 from version V1.2a onwards.

The device enables the recording and processing of eight independent weather data signals from the Weather Sensor.

The WZ/S 1.1 has an integrated power supply unit for power supply to the Weather Sensor. The mains voltage is 115...230 V AC (+10 % – 15 % tolerance), 50/60 Hz.

The Weather Sensor WES/A 1.1 detects twilight, brightness in three directions, rain, temperature, day/night, wind speed and the date and time using the radio receiver. Sensor heating is automatically activated at temperatures under 10 °C or with precipitation.

The processing of the weather data is carried out in the application program **Sensor Data/1**.

The measured value can be sent as a 1-bit value, 1-byte value, 2-byte value or 3-byte value via the bus to suit the selected parameter.

It is possible to set 2 threshold values per channel. The threshold value each have an upper and lower limit which can be set independently. The threshold values themselves can be modified via the bus. It is important to note that the threshold values are overwritten after a download.

The internal logic can be set as an AND or OR gate. The gate can be assigned a maximum of 4 inputs and one output. The inputs and outputs can be inverted. It is possible to link e.g. 2 inputs together via the logic function.

Four value memories each featuring 24 memory slots are available. The values are stored in the ring buffer.

2 Device technology

2.1 Weather Unit

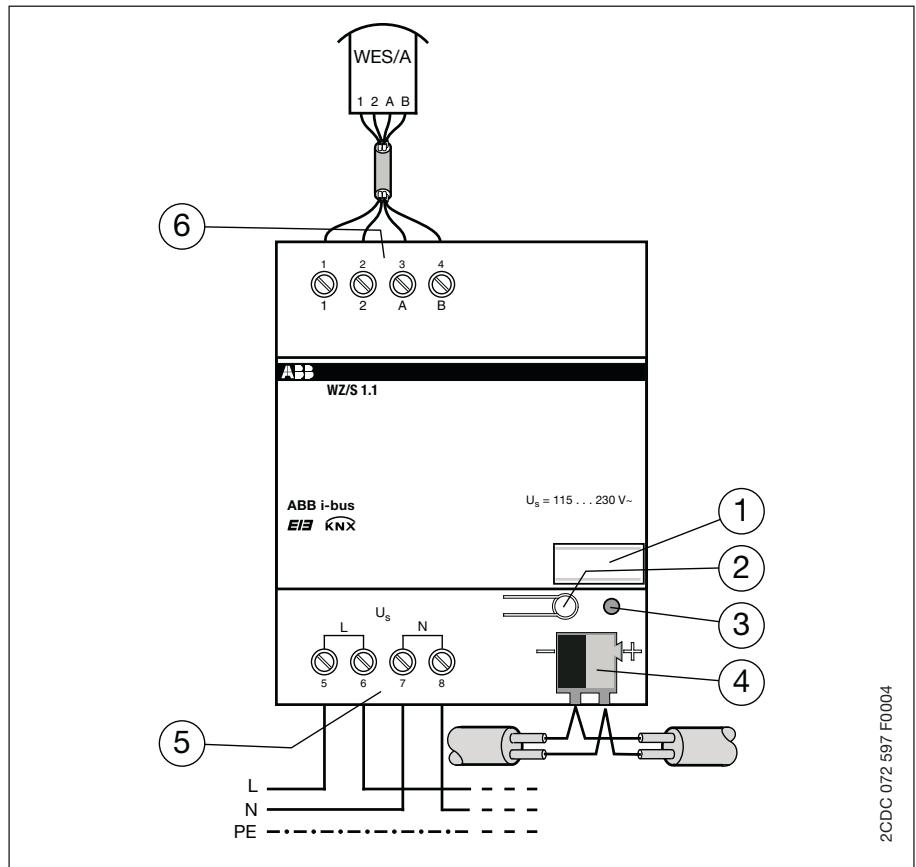
Fig. 1: WZ/S 1.1

The Weather Unit WZ/S 1.1 is used for recording weather data – primarily for domestic purposes. The Weather Sensor WES/A 1.1 is connected to the WZ/S 1.1. The connection to the bus is established via the Bus Connection Terminal at the front of the device. The device is ready for operation after connecting the mains voltage of 115...230 V AC and the bus voltage. The Weather Unit WZ/S 1.1 is parameterised via ETS2 V1.2a or higher.

Note Cascade control is not possible with the WZ/S 1.1. Please use our Weather Unit WS/S for this purpose. The WES/A sensor combined with the WZ/S is suitable for small to mid-sized buildings. The façade structure, wind conditions and special local influences should also be considered with these buildings.

2.1.1 Technical data "Weather Unit"

Power supply	<ul style="list-style-type: none"> – Bus voltage – Current consumption, bus – Mains voltage U_s – Power consumption – Current consumption, mains – Power loss 	<ul style="list-style-type: none"> 21 ... 32 V DC < 10 mA 115 ... 230 V AC (+ 10 % – 15 %), 50/60 Hz Max. 11 W, at 230 V AC 80/40 mA, at 115/230 V AC Max. 3 W, at 230 V AC
Connections	<ul style="list-style-type: none"> – KNX – Mains voltage – 1 (0 V potential) – 2 (24 V potential) – A (RS 485) – B (RS 485) 	<ul style="list-style-type: none"> Via Bus Connection Terminal, screwless 2 screw terminal Power supply Power supply serial Data communication serial Data communication
Connection terminals	<ul style="list-style-type: none"> – Screw terminals – Tightening torque 	<ul style="list-style-type: none"> 0.2 ... 2.5 mm² finely stranded 0.2 ... 4.0 mm² single-core Max. 0.6 Nm
Cable length / cross-section	– Between Weather Unit and Weather Sensor	
Operating and display	– P-YCYM or J-Y(ST)Y	
Elements	<ul style="list-style-type: none"> – Programming-LED – Programming button 	<ul style="list-style-type: none"> for assignment of the physical address for assignment of the physical address
Enclosure	– IP 20	to DIN EN 60 529
Enclosure safety class	– II	to DIN EN 61 140
Temperature range	<ul style="list-style-type: none"> – Operation – Storage – Transport 	<ul style="list-style-type: none"> – 5 °C...+ 45 °C – 25 °C...+ 55 °C – 25 °C...+ 70 °C
Design	<ul style="list-style-type: none"> – Modular DIN-Rail Component (MDRC) – Dimensions – Mounting width in space units – Mounting depth 	<ul style="list-style-type: none"> Modular installation device, ProM 90 x 72 x 64.5 mm (H x W x D) 4, 4 modules at 18 mm 64.5 mm
Installation	– On 35 mm mounting rail	to DIN EN 60 715
Mounting position	– as required	
Weight	– 0.2 kg	
Housing/colour	– Plastic housing, grey	
Approvals	– KNX to EN 50 090-1, -2	Certification
CE mark	– in accordance with the EMC guideline and low voltage guideline	


Table 1: Weather Unit technical data

Application program	Max. number of communication objects	Max. number of group addresses	Max. number of associations
Sensor Data/1	78	100	100

Table 2: Application program

Note The programming requires EIB Software Tool ETS2 V1.2a or higher. If ETS3 is used a ".VD3" type file must be imported. The application program is available in the ETS2 / ETS3 at ABB/input/Weather Unit 1-fold.

2.1.2 Wiring diagram "Weather Unit"

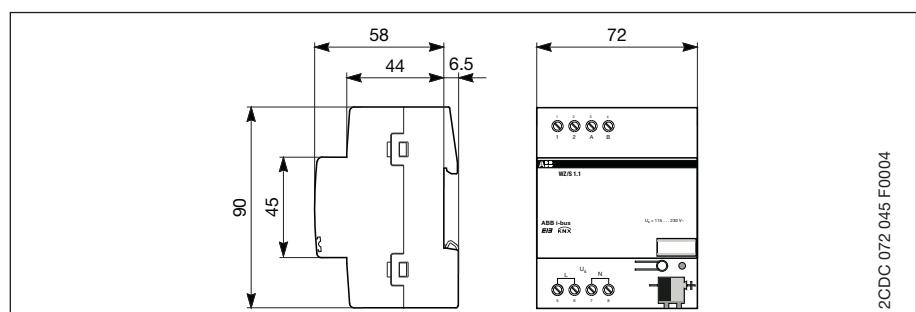

2CDC 072 597 F0004

Fig. 2: Circuit diagram "Weather Unit"

- 1 Label carrier
- 2 Programming button
- 3 Programming LED

- 4 Bus Connection Terminal
- 5 Mains power supply
- 6 Weather Sensor connection

2.1.3 Dimension drawing "Weather Unit"

2CDC 072 045 F0004

Fig. 3: Dimension drawing "Weather Unit"

2.2 Weather Sensor

2CDC 071 057 F0004

Fig. 4: WES/A 1.1

The weather sensor WES/A 1.1 is used primarily for domestic purposes. For detection of twilight (1...999 Lux), brightness in three directions (1,000...99,000 Lux), rain (upper sensor and lower surfaces are permanently heated). Temperature (-30...+50 °C), day/night, windspeeds (0...24.0 m/s), date and time (DCF radio receiver). An additional heating transformer is not required. The Weather Sensor WES/A 1.1 works only in conjunction with the WZ/S 1.1 Weather Unit.

Note Cascade control is not possible with the WZ/S 1.1. Please use our Weather Unit WS/S for this purpose. The WES/A sensor combined with the WZ/S is suitable for small to mid-sized buildings. The façade structure, wind conditions and special local influences should also be considered with these buildings.

2.2.1 Technical data
“Weather Sensor”

Power supply	– Voltage	24 V DC +/- 10 %
	– Current	150 mA
Weather Sensor connections	– 1 (0 V potential) – 2 (24 V potential) – A (RS 485) – B (RS 485)	Voltage supply Voltage supply serial Data communication serial Data communication
Connection terminals	– Connection terminal, inscribed, plug-in	0.8 single core
Cable length	– Between the Weather Unit and weather	Max. 100 m
Cable length / cable cross-section	– P-YCYM or J-Y(ST)Y	2 x 2 x 0.8
Temperature range	– Operation	-30...+70 °C
Enclosure	– IP 65	DIN EN 60 529
CE mark	– in accordance with the EMC guideline and low voltage guideline	
Installation	– surface mount	
Dimensions	– 80 x 67 x 125	(H x W x D)
Weight	– 0.2 kg	
Enclosure	– Plastic	
Housing colour	– White	
Sensors: Twilight	– Total measurement range – Resolution – Measurement range – Accuracy – Measurement range – Accuracy	0...999 Lux 1 Lux 1...100 Lux +/- 4 % of final value / +/- 4 Lux 101...999 Lux +/- 20 % of final value / +/- 200 Lux
3 x brightness	– Total measurement range – Resolution – Measurement range – Accuracy – Measurement range – Accuracy	0,100...99,000 Lux 1.000 Lux 0...10,000 Lux +/- 20 % of final value / +/- 2,000 Lux 11,000...99,000 Lux +/- 15 % of final value / +/- 15,000 Lux
Rain sensor	– Power consumption – Function	2.4 Watt The upper sensor and lower sensor surfaces are permanently heated. After a rain alarm the rain signal is output for about 6 minutes.
Temperature	– Total measurement range – Resolution – Accuracy	-30...+50 °C 0.6 – 0.7 °C +/- 5 % of final value / +/- 2,5 K
Daylight	– Day => Night – Night => Day	Under 10 Lux is night at more than 10 Lux it is day (one minute and 15 seconds after the brightness value has exceeded 10 Lux)

Wind speed *	- Total measurement range - Resolution - Measurement range - Accuracy - Measurement range - Accuracy	0...24 m/s 0.5 m/s 0.5...2.0 m/s +/- 30 % of measured value 2.5...24 m/s +/- 20 % of measured value
Radio receiver	DCF 77	Date and time

* The stated tolerances relate to angles of incidence of the air flow in the range of $\pm 45^\circ$, (WES/A as seen from the front, fixing is located at the rear). Higher tolerances must be anticipated for other angles of incidence of the air flow.

Table 3: Technical data "Weather Sensor"

2.2.2 Wiring diagram "Weather Sensor"

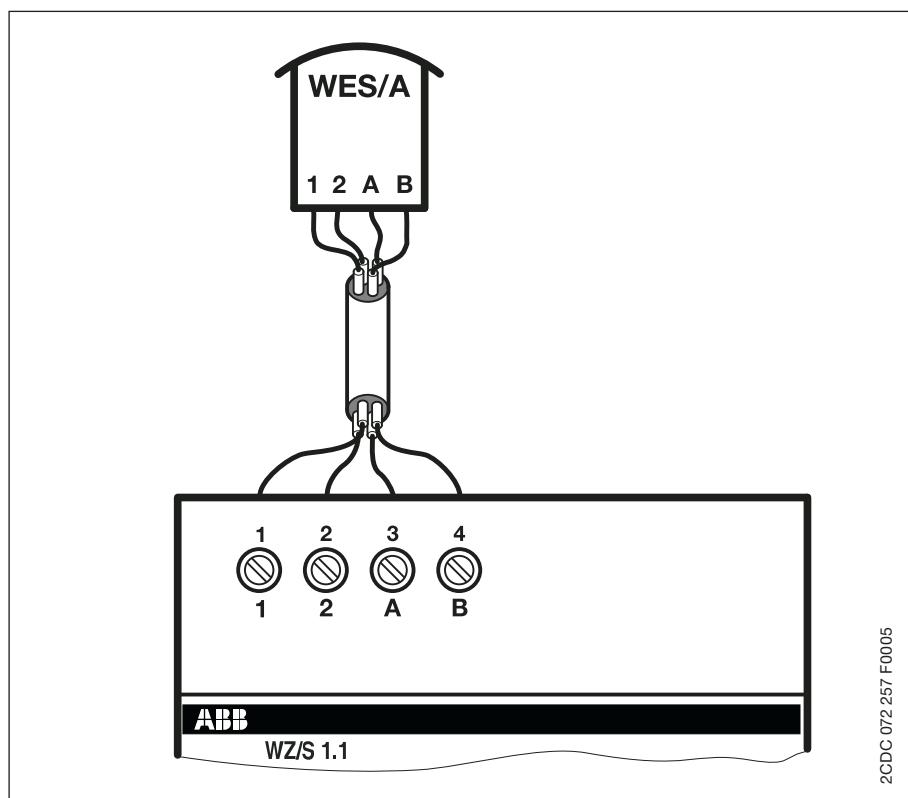


Fig. 5: Circuit diagram "Weather Sensor"

2.2.3 Dimension drawing "Weather Sensor"

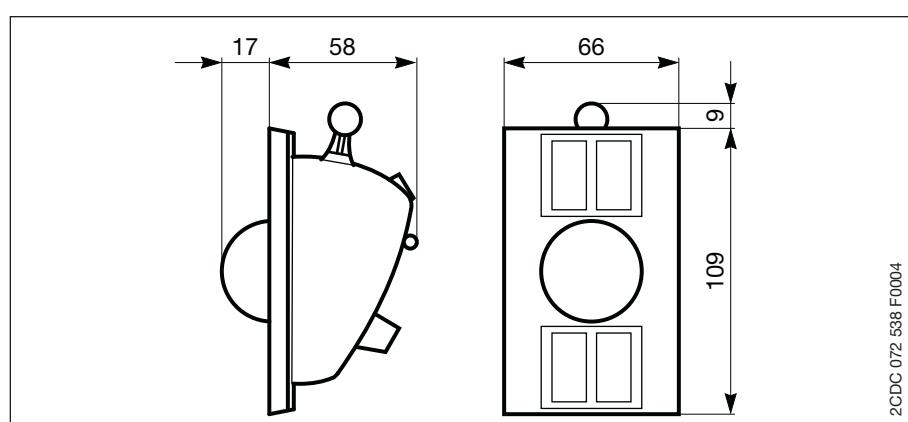


Fig. 6: Dimension drawing "Weather Sensor"

2.2.4 Exploded drawing “Weather Sensor”

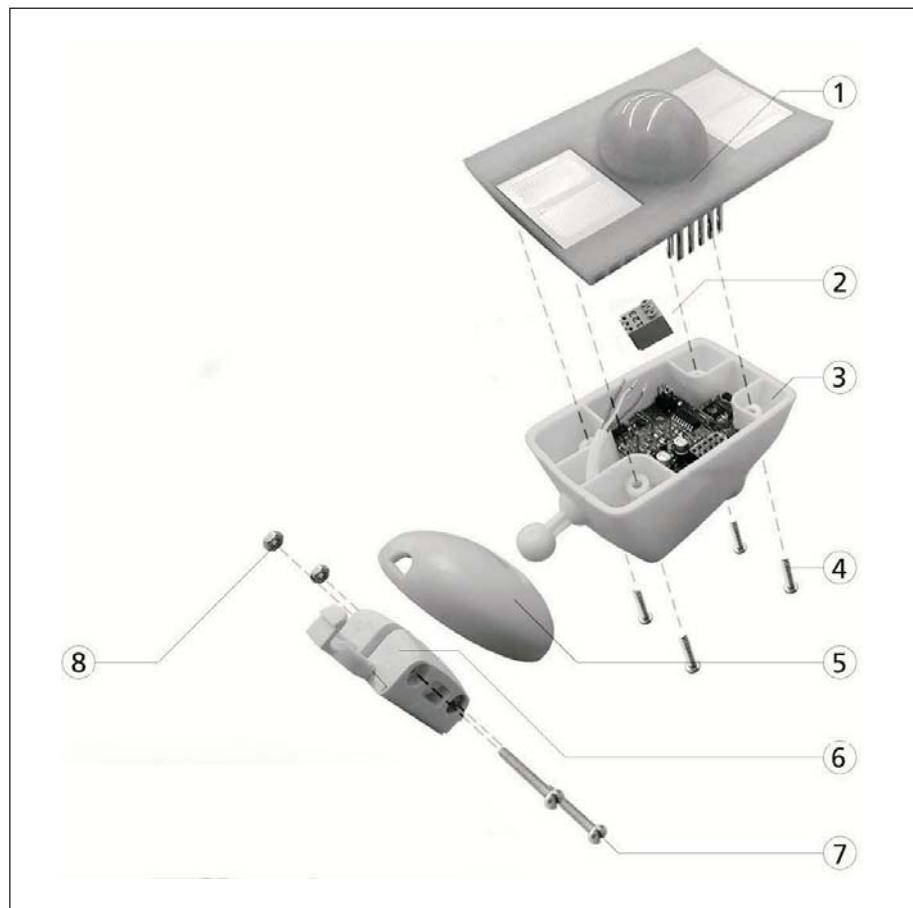


Fig. 7: Exploded drawing “Weather Sensor”

1 Sensor field (cover)	5 Fixture bracket cover
2 Pluggable connection terminal	6 Bracket
3 Housing lower section	7 Stainless-steel screws M3x20mm
4 Screws M3x20mm	8 Nuts M3

2.2.5 Arrangement and designation of the sensors

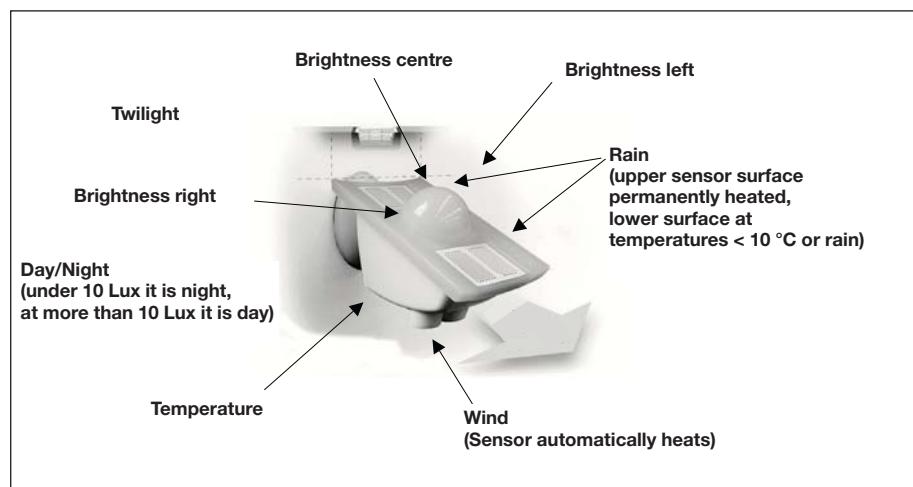


Fig. 8: Arrangement and designation of the sensors

2.3 Installation of the Weather Unit

The Weather Unit is a modular installation device for fast installation in the distribution board on 35 mm mounting rails to DIN EN 60 715.

The electrical connection is implemented using screw terminals. The connection to the bus is implemented using the supplied bus connection terminal.

The device is ready for operation once the mains voltage of $U_s = 115\ldots230$ V AC and the bus voltage have been applied.

Accessibility to the device for the purpose of operation, testing, visual inspection, maintenance and repair must be provided (conform to DIN VDE 0100-520).

Note The Weather Unit WZ/S 1.1 may not be mounted outdoors. The technical data of the Weather Sensor must be observed for optimum measuring or monitoring values. The same applies as regards equipment for lightning protection.

Commissioning requirements

In order to commission the Weather Unit WZ/S 1.1, a PC with ETS2 from version V1.2a or higher is required as well as an interface to the bus, e.g. via an RS232 interface or via a USB interface. The device is ready for operation when the mains voltage of $U_s = 115\ldots230$ V AC and the bus voltage have been applied.

The installation and commissioning may only be carried out by electrical specialists. The appropriate norms, guidelines, regulations and specifications should be observed when planning and setting up electrical installations.

- The device should be protected from damp, dirt and damage during transport, storage and operation.
- The device should not be operated outside the specified technical data!
- The device should only be operated in a closed housing (distribution board)!

Supplied state

The Weather Unit is supplied with the physical address 15.15.255.

The **Sensor Data/1** user program is pre-installed. Hence, only group addresses and parameters must be loaded during commissioning.

The entire application can be reloaded if required.

Download behaviour

Due to the complexity of the device, it may take up to 1.5 minutes before the progress bar appears depending the PC which is used.

Assignment of the physical address

The assignment and programming of the physical address is carried out in the ETS.

Cleaning

If devices become dirty, they can be cleaned using a dry cloth. Should a dry cloth not remove the dirt, they can be cleaned using a slightly damp cloth and soap solution. Corrosive materials or solutions should never be used.

Maintenance

The device is maintenance-free. No repairs should be carried out by unauthorised personnel if damage occurs (e.g. during transport or storage). The warranty expires if the Weather Unit is opened.

Note After successful commissioning of the Weather Unit and of the weather sensor, the communication object “No time synchronisation” should be read. This verifies if the radio receiver can receive a valid DCF signal. With good reception, the sensor will require about 2–3 minutes to synchronise to the signal.

Note After successful commissioning of the Weather Unit and Weather Sensor, the Weather Sensor will require a settling or heating up phase of about 30 minutes. Only after this phase will the correct temperature be available and can be calibrated if necessary.

2.4 Mounting and installation of the Weather Sensor

Select an installation site on the building where wind, rain and sun can be detected without impedance by the sensors. In particular, the light dome on the cover may not be obstructed by buildings or trees. A free space of at least 60 cm must remain under the Weather Sensor WES/A 1.1 in order to allow for correct wind measurement and to prevent it being snowed in during a snowfall.

Metals in the vicinity of the Weather Sensor reduce the reception quality of the installed radio clock receiver. Please keep a clearance of at least 10 cm from surrounding metallic objects.

Note Strong magnetic fields, disturbance fields of electrical machines and transmitters can block or interfere with reception. This should be observed with the installation of the Weather Sensor.

Preparation for installation

Verify that all the parts in the parts list are available, see chapter 2.2.4. Push both of the side sections (hemispherical indentations) of the bracket (6) so that a hollow sphere results. Insert two nuts (8) into the side section which features a receptacle for the hexagon nut. Screw the stainless steel screws (7) through the other side section into the hexagon nuts. Only turn the screw until the tip of the screw is aligned with the edge of the hexagon nut (do not screw any tighter). Open the sensor field (cover) (1) of the Weather Sensor WES/A 1.1 by loosening the screws (4).

Installation

Attach the bracket (6) vertically. Now insert the cable and connect the Weather Sensor WES/A 1.1 using the plug in and inscribed connection terminal. The screwed joint must be tightened to guarantee that it is sealed. Place the sensor field (cover) (1) onto the housing lower section (3), ensure that the plug connection is correctly plugged in. Before screwing on the sensor field (cover) (1), ensure that the sensor field (cover) (1) is situated correctly on the housing lower section (3) (both parts must sit firmly). Now screw the screws (4) back in. The screws must be tightened to ensure that the device is sealed correctly. Now plug the housing cover (5) onto the ball joint of the housing lower section (3) and lock the housing lower section into the bracket (6).

Alignment

Ensure that the WES/A 1.1 is aligned by about 45° (longitudinal direction) to the horizontal plane. The WES/A 1.1 must be mounted horizontally in the transverse (horizontal) plane. The stainless steel screws (7) should be tightened moderately. Check the installation again and correct if necessary. Clip the housing cover (5) for the bracket (6) back on. The mounting of the Weather Sensor must be undertaken as described, otherwise the radio receiver reception will malfunction.

Fig. 9: Alignment "Weather Sensor"

Note Cascade control is not possible with the WZ/S 1.1. Please use our Weather Unit WS/S for this purpose.

The Weather Sensor WES/A 1.1 should be aligned horizontally to the facade, which is most oriented in a southerly direction (see illustration below). The Weather Sensor thus directly provides brightness values for the façades provided that they are aligned at right angles to each other.

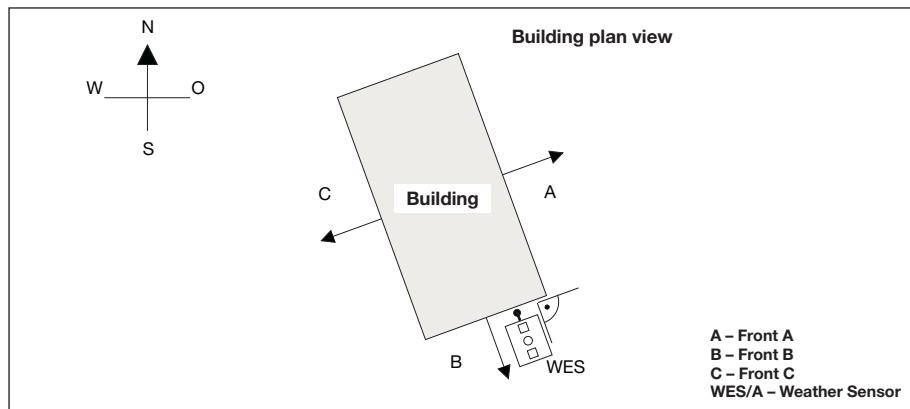


Fig. 10: Alignment of the Weather Sensor on the building

Connection / commissioning

The electrical connection is implemented using connection terminals. The connection to the Weather Unit is implemented using a cable length of maximum 100 m. The connection is implemented using commercially available P-YCYM or J-Y(ST)Y cables 2 x 2 x 0.8 or similar. Do not open the Weather Sensor WES/A 1.1 when water or rain can enter it. Even a few drops can make the Weather Sensor WES/A 1.1 unusable.

The external temperature sensor is glued onto the housing and the connection wires of the sensor are connected to the electronics by an internally drilled hole in the housing. If the sensor is pushed or rotated with too much force the connection wires may break and the temperature measurement may no longer function as intended.

Maintenance

A inspection onsite should be undertaken at regular intervals to ensure malfunction free operation of the Weather Sensor. A high level of dirt or contamination can lead to the Weather Sensor transmitting incorrect weather information.

Note The terminal designations can be found on the circuit board and connection terminal.

Note After successful commissioning of the Weather Unit and Weather Sensor, the communication object “No DCF signal” should be read. This verifies if the radio receiver can receive a DCF signal. With good reception, the sensor will required about 2-3 minutes to synchronise to the signal.

Note After successful commissioning of the Weather Unit and Weather Sensor, the Weather Sensor will require a settling or heating up phase of about 30 minutes. Only after this phase will the correct temperature be available and can be calibrated if necessary.

3 Commissioning

3.1 Overview

The Weather Unit WZ/S 1.1 is loaded with the application **“Sensor Data/1”**. Programming requires ETS2 V1.2a or higher. If ETS3 is used a “.VD3” type file must be imported. A maximum of 78 communication objects, 100 group addresses and 100 associations can be linked.

The following functions can be selected to suit the sensor type:

Data types of the output value	The output value can be sent as a 1-bit value [0/1] or as a 2-byte value [EIB floating point]
Output range	Predefined output range of the sensor.
Threshold	2 threshold values can be set, each with an upper and lower limit. The limits can be modified via the bus.
Logical functions	Logic functions such as AND and OR gates can be created. There are 4 inputs available per logic function. These can be linked with 2 external inputs. The inputs and outputs can be inverted.
Value memory	24 values per value memory can be stored in a ring buffer bus. The time is saved using radio receiver with each value.
Radio receiver	Data and time can be sent on the bus.

Table 4: Functions of the application program

3.2 Parameter

Note The standard settings for the options are underlined, e.g.
Options: no/yes

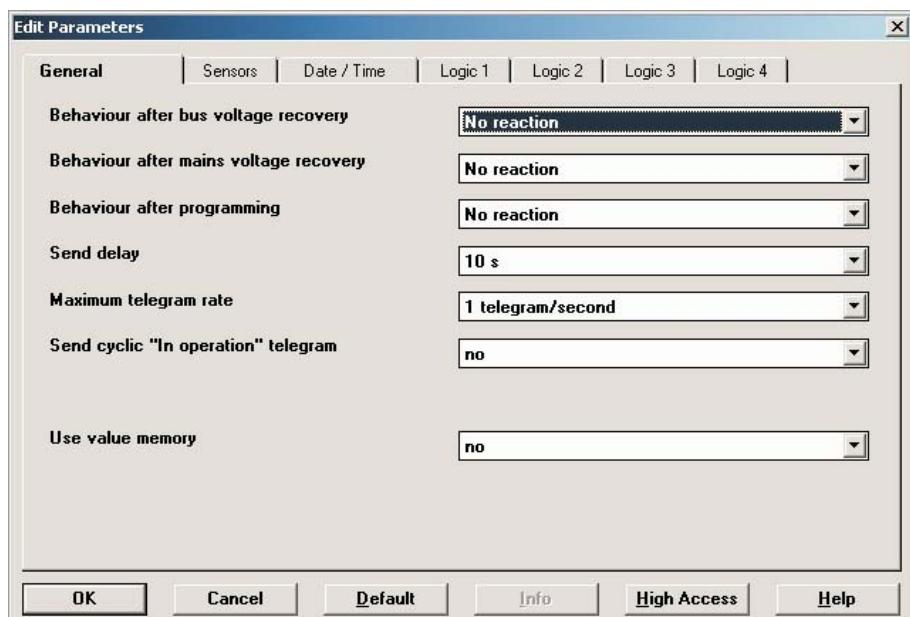

**3.2.1 Parameter window
“General”**

Fig. 11: Parameter window “General”

**Behaviour after bus voltage recovery,
Behaviour after mains voltage recovery,
Behaviour after programming**

Options: no reaction
send output and threshold values immediately
send output and threshold values with a delay

The parameters are used for setting the behaviour on *bus voltage recovery*, *mains voltage recovery* and after *programming*.

Option *no reaction* = Send no values

Option *send output and threshold values immediately* = Send values immediately

Option *send output and threshold values with a delay* = Send values with a delay.

The *Send delay* is set separately and applies to all three parameters.

How does the device react if the bus voltage recovers before the supply voltage?

As the circuit is supplied by mains voltage, it is not possible to react to the bus voltage recovery event. The circuit can not be contacted. If the mains voltage then recovers, the bus voltage is already available and the reaction after a bus voltage recovery is implemented.

How does the device react if the mains voltage recovers before the bus voltage?

Case 1: Option “send output and threshold values immediately”. The telegrams are sent immediately. The telegrams are not visible as the bus voltage is still absent. If the bus voltage recovers the reaction will be in accordance with the set bus voltage recovery option.

Case 2: Option “send output and threshold values with a delay”.
Now the behaviour will depend on the bus voltage recovery option.

Option “no reaction”
The operating send delay will not be interrupted.

Option “send output and threshold values immediately”
The operating send delay will be interrupted and it is sent immediately.

Option “send output and threshold values with a delay”
The operating send delay will be re-triggered. The telegram is sent after the send delay time has timed out.

How does sending values to the Weather Unit function?

Generally the send options of the individual sensors overlap with the options, which are possible with mains voltage recovery or programming.

Here is an example. If a temperature sensor has been programmed to send cyclically every 5 seconds, it will continue to do so after mains voltage recovery, regardless of the selected option for mains voltage recovery.

In contrast, the rain sensor which should send with a change, it may not send for weeks provided that it does not rain in this time, as its object value does not change.

With the options in the parameter Behaviour on ... it is possible to achieve after an event (mains voltage recovery, programming and bus voltage recovery) that the complete process map of the sensor (output values and threshold values) are sent either immediately or after a certain delay. This ensures that all the relevant information is sent once after the event (e.g. for visualisation purposes).

Send delayOptions: 1s/2s/3s/5s/10s/20s/30s/50s

The send delay determines the time after bus voltage recovery, *mains voltage recovery and programming* which must be waited before the telegrams should be sent from the Weather Unit on the bus.

Once the device is started, the following communication objects also send a telegram after the set delay.

- Communication object “Request time – Time synchronisation” sends a read telegram, with the option *Slave (EIB time synchronisation)* if the parameter mode is selected in the *Date / Time* tab. It is still possible to request the time after the start or after a bus failure. It is thus possible to choose between sending of a request object or a value read telegram on the *Time* communications object.
- Communication object “In operation – System” sends cyclically on the bus at the set intervals
- Communication object “Status byte – System” sends a status byte telegram.

Maximum telegram rateOptions: 1/2/3/5/10/20 telegrams/second

To control the bus load, it is possible to limit the *Maximum telegram rate* per second with this parameter.

Send cyclic “In operation” telegramOptions: no/yes

Option *no* = *Cyclic “In operation” telegram* is not sent

Option *yes* = the “In operation – System” communication object appears

If *yes* is selected in the parameter *Cyclical “In operation” telegram*, the following parameter window becomes visible.

Send interval for “In operation” telegramOptions: 10min/30min/1h/3h/6h/12h/24h

The communication object “In operation – System” is sent cyclically on the bus after the set interval.

The Weather Unit can thus be cyclically monitored.

Use value memoryOptions: no/yes

With the selection *yes* the value memory 1 to 4 becomes visible as an independent parameter window.

3.2.2 Parameter window “Sensors”

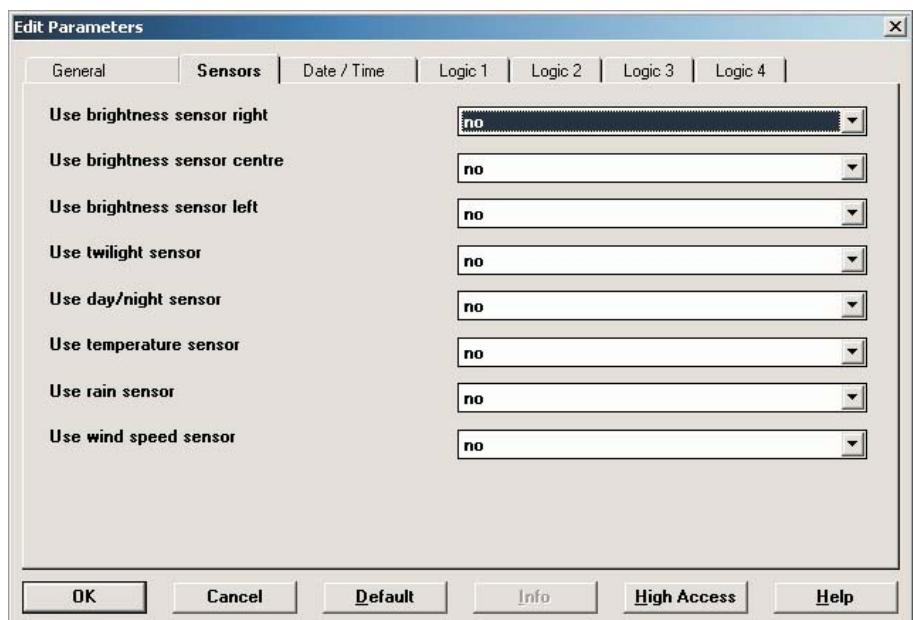


Fig. 12: Parameter window “Sensors”

Use brightness sensor right
Use brightness sensor centre
Use brightness sensor left
Use twilight sensor
Use day/night sensor
Use temperature sensor
Use rain sensor
Use wind speed sensor
 Options: no/yes

If yes is selected 5 parameter windows become visible for each sensor.

3.2.3 Parameter window “Date / Time”

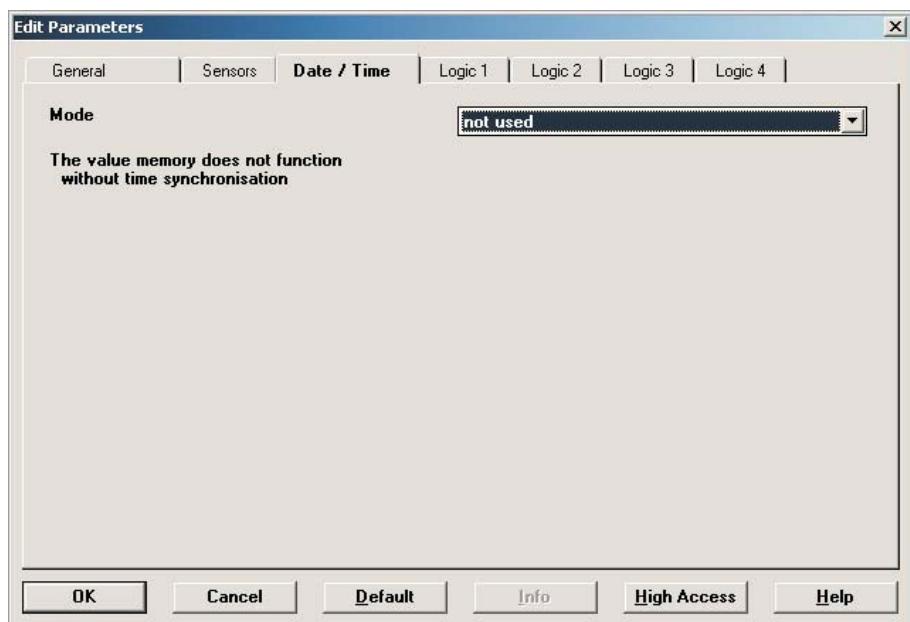


Fig. 13: Parameter window “Date / Time”

Operating mode:

Options: not used/
Master (synchronisation via sensor)/
Internal (synchronisation via sensor)/
Slave (synchronisation via bus)

Note The value memory does not function without time synchronisation.

3.2.3.1 Operating mode “Master (synchronising via sensor)”

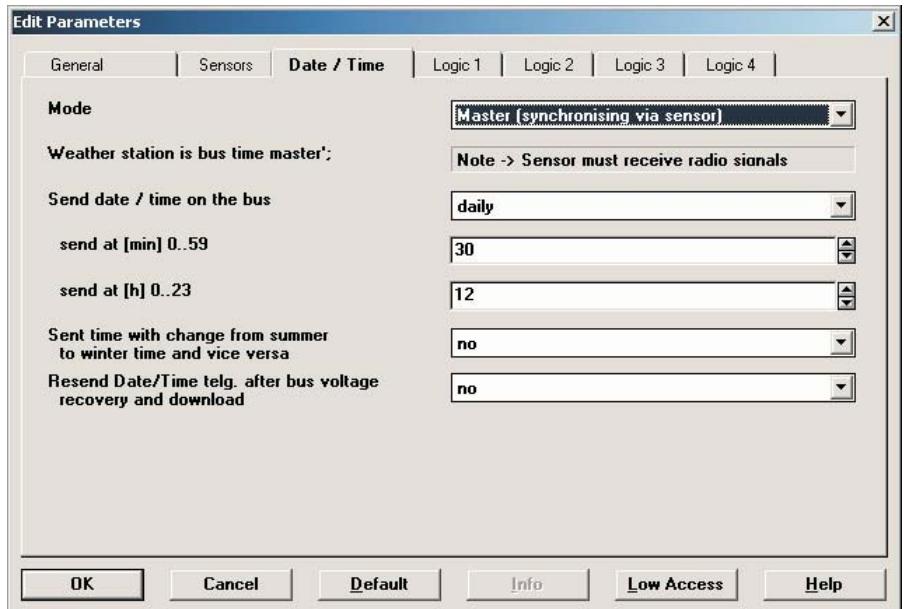


Fig. 14: Parameter “Master (synchronising via sensor)”

Weather Unit is bus time master

Note -> Sensor must receive radio signals

To ensure that the Weather Unit can be used as a master, it is important to ensure that the radio signal can be received.

The information can be read via the communication object “No DCF signal”.

Telegram value “0” = DCF signal available

Telegram value “1” = no DCF signal available

Send date / time on the busOptions: daily/hourly/every minute

The send interval of the date and time is set with this parameter.

send at [min] 0...59

Options: 0...30...59

send at [h] 0...23

Options: 0...12...23

With both of these parameters the minute and hour when they should be sent *daily* are set.

With the option *hourly* only the parameters *send at [min] 0...59* appears.

With the option *every minute* the date and time are sent every minute.

Sent time with change from summer to winter time and vice versaOptions: no/yes

With the option yes the change from summer to winter time and vice versa the time is sent automatically.

Resend Date/time telg. after bus voltage recovery and programmingOptions: no/yes

If the option yes is selected with the parameter *Date/time delayed send after bus voltage recovery, mains voltage recovery and programming* the following parameters become visible.

Resent afterOptions: 1s/2s/3s/5s/10s/20s/30s/50s

The parameter *Resent after* determines the time, which is waited after *bus voltage recovery and programming* until the date/time telegram is sent by the Weather Unit to the bus.

When is a valid telegram for date/time sent?

Immediately after the Weather Unit is operational and the weather sensor receives a valid DCF signal. Otherwise nothing is sent. After the set time has timed out in the *Resent after* parameter a valid telegram for the date/time is sent.

An example: The time is set to 30 seconds. The bus voltage recovers and a valid DCF signal is received from the weather sensor. The valid telegram for date/time is immediately sent without waiting for 30 seconds. After the 30 seconds has elapsed the telegram for date/time is sent again.

3.2.3.2 Operating mode

**“Internal
(synchronising via sensor)”**

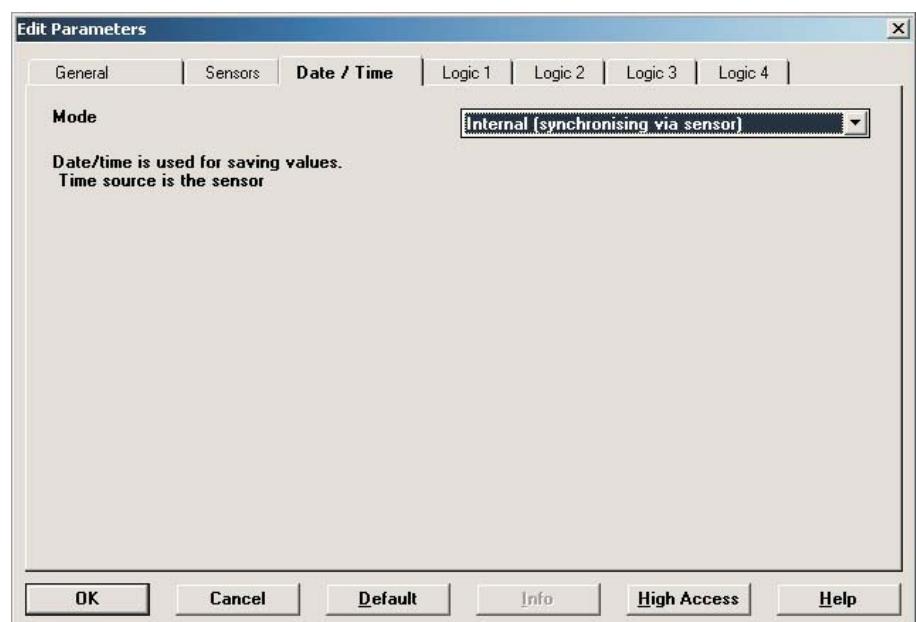


Fig. 15: Parameter “Internal (synchronising via sensor)”

Note

Date/time is used for saving values. Time source is the sensor.

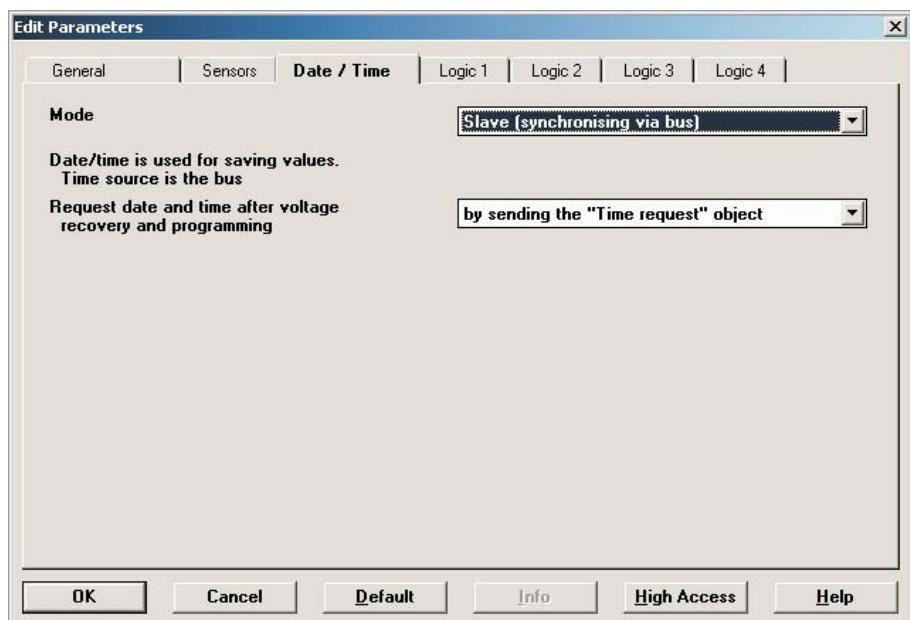

3.2.3.3 Operating mode**“Slave
(synchronising via bus)”**

Fig. 16: Parameter “Slave (synchronising via bus)”

Note Date/time is used for saving values. Time source is the bus.

Request date and time after voltage recovery and programming

Options: do not use/
ValueRead telegram/
by sending the “Time request” object

The request for the date and time with *voltage recovery and programming* is set with this parameter.

3.2.4 Parameter window “Logic 1”

In the following the parameters for Logic 1 are described, which also apply for Logic 2, 3 and 4.

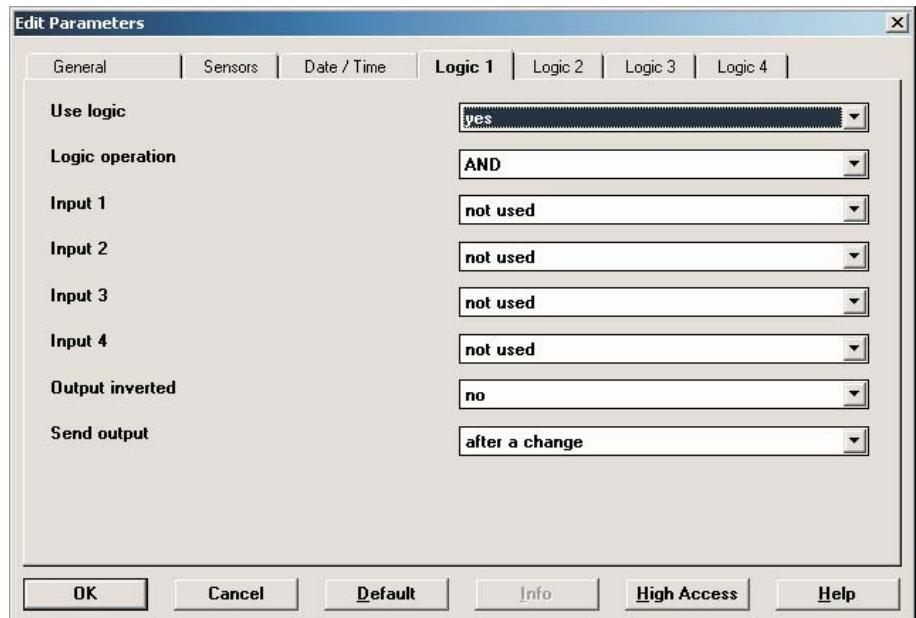


Fig. 17: Parameter window “Logic 1”

Use logic

Options: no/yes

This parameter is used to determine if Logic 1 is to be used. With the selection yes the communication object “Output send – Logic 1” appears.

Logic operation

Options: AND/OR

Option AND = Logic as AND gate

Option OR = Logic as OR gate

Input 1...4Options: not used

Brightness right value below threshold 1

Brightness right value above threshold 1

Brightness right value below threshold 2

Brightness right value above threshold 2

...

Twilight value below threshold x

Twilight value above threshold x

Day/night value below threshold x

Day/night value above threshold x

Rain value below threshold x

Rain value above threshold x

Temperature value below threshold x

Temperature value above threshold x

Wind speed value below threshold x

Wind speed value above threshold x

Communication object, input 1

Communication object, input 1 inverted

Communication object, input 2

Communication object, input 2 inverted

* This condition is “true”, i.e. the logic value is “1”, if the threshold value is exceeded or below the limit, regardless of if the assigned threshold object sends a “0” or a “1” when exceeded or below the limit.

Up to four different inputs can be assigned to logic 1 via these four parameters.

Two external inputs are available with communication objects input 1 and 2.

Output invertedOptions: no/yes

The inversion of the output is defined via this parameter.

Send outputOptions: after a change

after a change and cyclically

This parameter defines how the output should be sent.

This parameter defines how the output should be sent.

Option *after a change* = Send output after a change

Option *after a change and cyclically* = Send output after a change and cyclically.

If the option *after a change and cyclically* is selected with the parameter *send output*, the following parameter becomes visible.

Output is sent everyOptions: 5s/10s/30s/1min/5min/10min/30min/1h/6h/12h/24h

The interval for cyclical sending is set with this additional parameter.

3.2.5 Parameter window “Brightness right”

In the following the parameters for the sensor “Brightness right” are described. The explanations apply both to the sensors “Brightness centre” and “Brightness left”.

Note The parameter window for brightness right is only active if “yes” has been selected in the parameter “Brightness sensor right”. The parameter can be found in the “Sensors” parameter window..

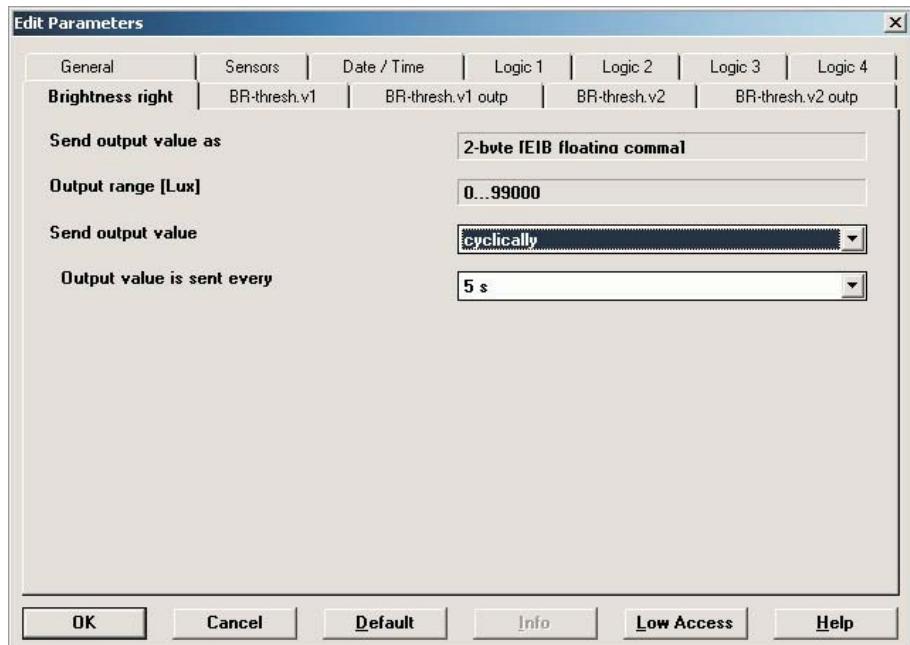


Fig. 18: Parameter window “Brightness right”

Send output value as

This parameter is fixed to 2-byte [EIB floating point].

What is the output value?

The output value designates the value which the Weather Unit sends on the bus. The Weather Unit records a sensor value, converts it according to the set parameters and sends it on the bus.

Output range [Lux]

The output range is fixed to 0...99.000.

Send output value

Options: *on request*
 after a change
 cyclically
 after a change and cyclically

This parameter defines how the output value should be sent.

Option *on request* = send output value on request

If the option *on request* is selected, the communication object “Request output value – brightness right” appears.

As soon as a “1” is received at this communication object, the current output value is sent once to the communication object “Output value – brightness right”.

Option *after a change* = Send output value after a change

Option *cyclically* = Send output value cyclically

Option *after a change and cyclically* = Send output value after a change and cyclically.

In the options *after a change*, *cyclically* and *after a change and cyclically* have been selected with the output value parameter, the following parameters become visible.

Output value is sent every

Options: 5s/10s/30s/1min/5min/10min/30min/1h/6h/12h/24h

The interval for cyclical sending is set with this additional parameter.

The output value is sent with a change in x Lux

Options: 1.000...5.000...25.000

This parameter defines from which change in Lux the output value is to be sent.

With the option 5.000, the output value is sent with a change exceeding 5.000 Lux.

3.2.5.1 Parameter window “Brightness R. threshold 1”

In the following the parameters for the threshold 1 are described and also apply to threshold 2.

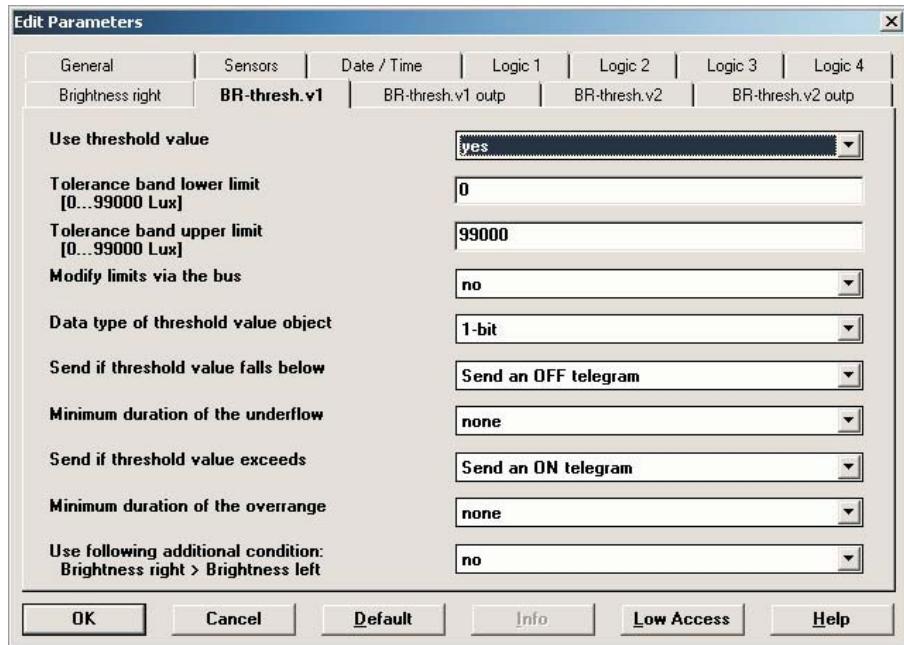


Fig. 19: Parameter window “Brightness right threshold 1”

Use threshold value

Options: no/yes

This parameter defines whether *Threshold 1* should be used. If yes is selected the communication object “Threshold value – brightness right threshold 1” appears.

Tolerance band lower limit [0...99.000 Lux]

Options: 0...99.000

Tolerance band upper limit [0...99.000 Lux]

Options: 0...99.000

The upper and lower limit is set via these two parameters.

Note If for example, the upper limit is set below the lower limit, the limits are not taken into consideration. The threshold value is not processed and a telegram is not sent to the bus.

Modify limits via the busOptions: no/yes

With this parameter you define whether *Modify limits via the bus* is permitted. When yes is selected, the communication objects “Modify – Brightness Right Threshold 1 lower limit” and “Modify – Brightness Right Threshold 1 upper limit” also appear.

Note The value formats of these communication objects are identical to the format set under the parameter *Send output value* in the parameter window *Brightness right*. The value must be sent in the same format as the output value of the sensor.

Data type of threshold value objectOptions: 1-bit/1-byte [0...255]

If the option *1 bit* is set for the parameter *Data type of threshold value object*, the following parameters appear.

Send if threshold value falls belowOptions: do not send a telegram
send an ON telegram
send an OFF telegram**Send if threshold value exceeds**Options: do not send a telegram
send an ON telegram
send an OFF telegram

Option *do not send a telegram* = No reaction occurs

Option *send an ON telegram* = Send telegram value “1”

Option *send an OFF telegram* = Send telegram value “0”

Minimum duration of the underflow**Minimum duration of the overrange**Options: none/5s/10s/30s/1min/5min/10min/30min/1h/6h/12h/24h

Option *none* = Send threshold value directly

With the further time options, a minimum duration can be selected.

If the send condition reverts during the minimum duration, no telegrams are sent.

If the option **1 byte [0...255]** is set for the parameter *Data type of threshold value object* the following parameters appear.

Send if threshold value falls below [0...255]

Options: 0...255

Send if threshold value exceeds [0...255]

Options: 0...255

A value from 0 to 255 can be entered in single steps.

Minimum duration of the underflow

Minimum duration of the overrange

Options: none/5s/10s/30s/1min/5min/10min/30min/1h/6h/12h/24h

Option none = Send threshold value directly

With the further time options, a minimum duration can be selected.

If the send condition reverts during the minimum duration, nothing is sent.

Use following addition condition:

Brightness left > Brightness right

Options: no/yes

With selection yes in the parameter, if the upper limit is exceeded the condition “Brightness left > Brightness right” is also polled.

If the condition is fulfilled it is assured that the Sun is in the east, i.e. it is located on the left brightness side.

If the condition is not fulfilled it is assured that the Sun is in the west, i.e. it is located on the right brightness side.

Note Cascade control is not possible with the WZ/S 1.1.
 Please use our Weather Unit WS/S for this purpose.

3.2.5.2 Parameter window “Brightness R. threshold 1 output”

The parameters for the output of threshold 1 are described in the following. They also apply to the output of threshold 2.

Fig. 20: Parameter window “Brightness right threshold 1 output”

Send threshold value object

Options: after a change
after a change and cyclically

This parameter is used to specify the send behaviour of the threshold value object.

Option *after a change* = Send threshold value object after a change

Option *after a change and cyclically* = Send threshold value object after a change and cyclically.

Note The threshold value object is sent cyclically until the value falls below or exceeds the other limit.

If the option *after a change and cyclically* is selected with the parameter *Send threshold value object*, the following parameters becomes visible.

Send if threshold value falls below every

Send if threshold value exceeds every

Options: 5s/10s/30s/1min/5min/10min/30min/1h/6h/12h/24h

These two parameters are used to define the point at which cyclical sending should take place after an underflow in the lower limit or an overrange in the upper limit.

3.2.6 Parameter window “Twilight”

In the following the parameters for Logic are presented and described, which differ from the description of the sensor “Brightness right”.

Note The parameter window for the brightness sensor is only active if “yes” has been selected in the “Twilight sensor” parameter. The parameter can be found in the “Sensors” parameter window.

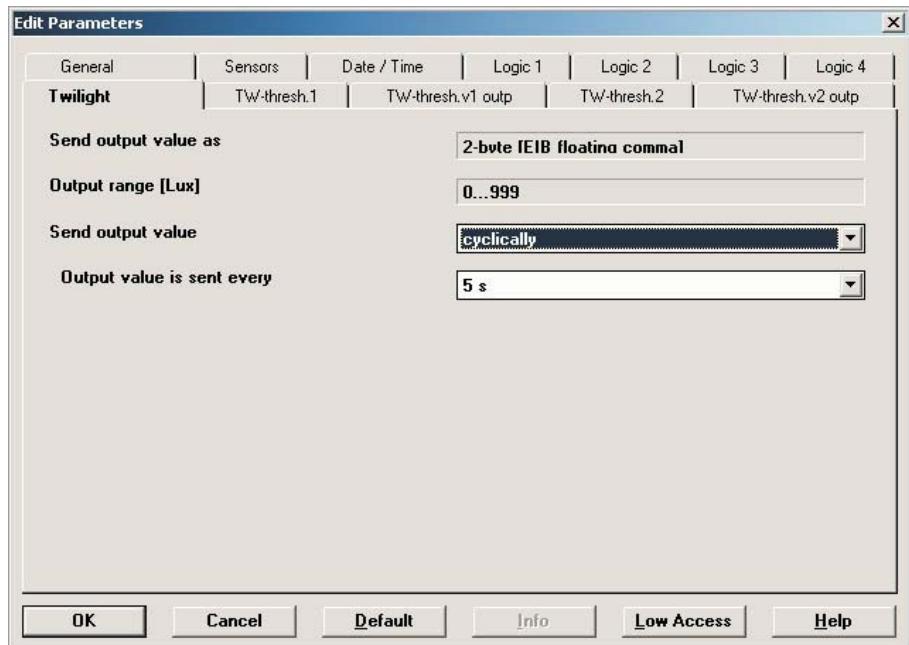


Fig. 21: Parameter window “Twilight”

Send output value as

This parameter is fixed to 2-byte [EIB floating point].

What is the output value?

The output value designates the value which the Weather Unit sends on the bus. The Weather Unit records a sensor value, converts it according to the set parameters and sends it on the bus.

Output range [Lux]

The output range is fixed to 0...999.

3.2.6.1 Parameter window “Twilight threshold value 1”

In the following the parameters for the threshold 1 are described and also apply to threshold 2.

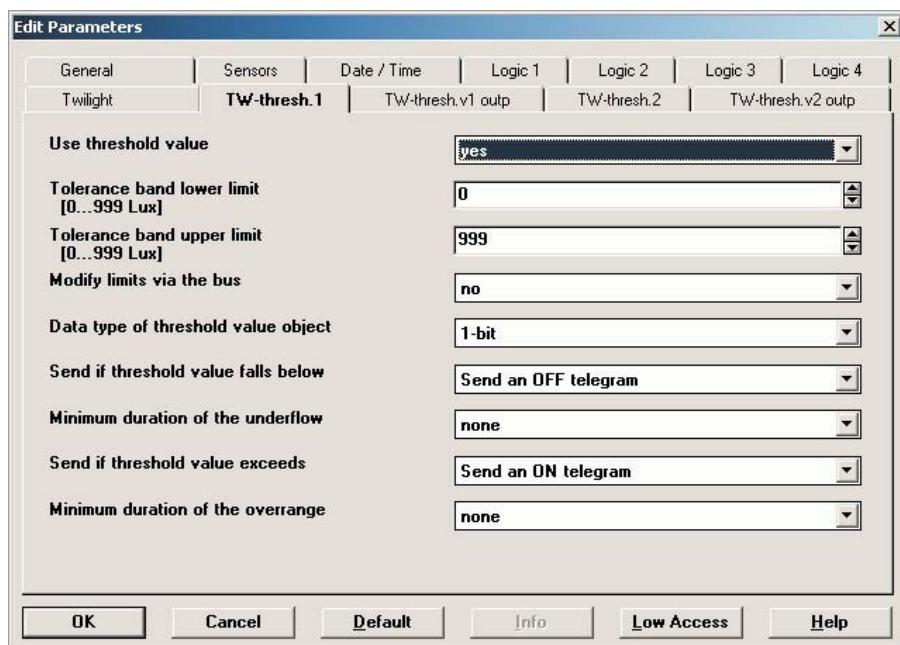


Fig. 22: Parameter window “Twilight threshold value 1”

Use threshold value

Options: no/yes

This parameter defines if *Threshold value 1* should be used. If yes is selected the communication object “Threshold value – brightness right threshold 1” appears.

Tolerance band lower limit [0...999 Lux]

Options: 0...999

Tolerance band upper limit [0...999 Lux]

Options: 0...999

The upper and lower limit is set via these two parameters.

Note Further parameter descriptions should be taken from the “Brightness sensor right” description.

3.2.7 Parameter window “Day/Night”

In the following the parameters for Logic are presented and described, which differ from the description of the sensor “Brightness right”.

Note The parameter window for the day/night sensor is only active if “yes” has been selected in the “use day/night sensor” parameter. The parameter can be found in the “Sensors” parameter window.

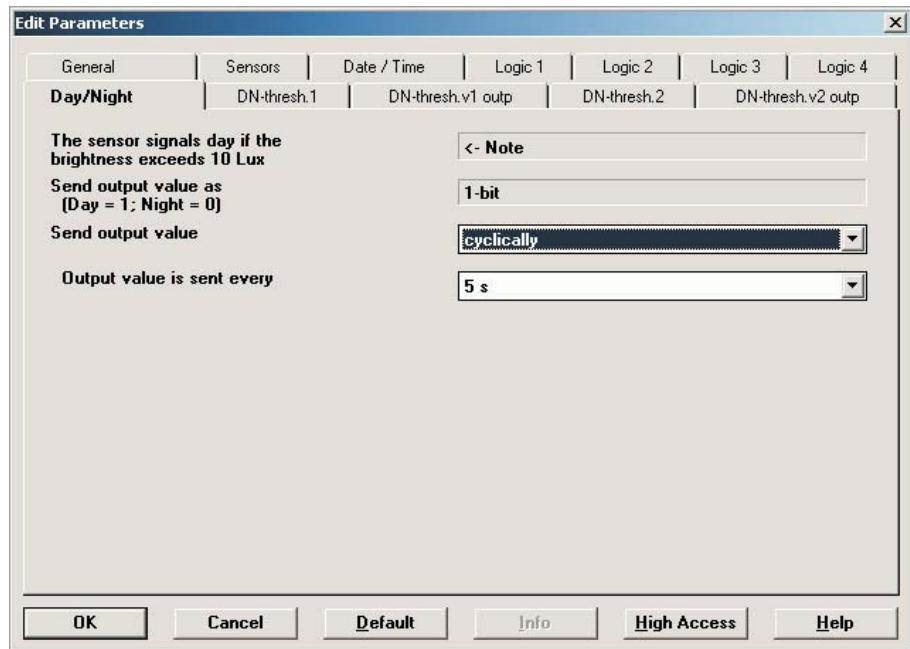


Fig. 23: Parameter window “Day/Night”

Note The sensor signals day if the brightness exceeds 10 Lux.

Send output value as (Day = 1; Night = 0)
This parameter is fixed to 1-bit.

Note Further parameter descriptions should be taken from the “Brightness sensor right” description.

3.2.8 Parameter window “Temperature”

In the following the parameters for Logic are presented and described, which differ from the description of the sensor “Brightness right”.

Note The parameter window for the temperature sensor is only active if “yes” has been selected in the “Temperature sensor” parameter. The parameter can be found in the “Sensors” parameter window.

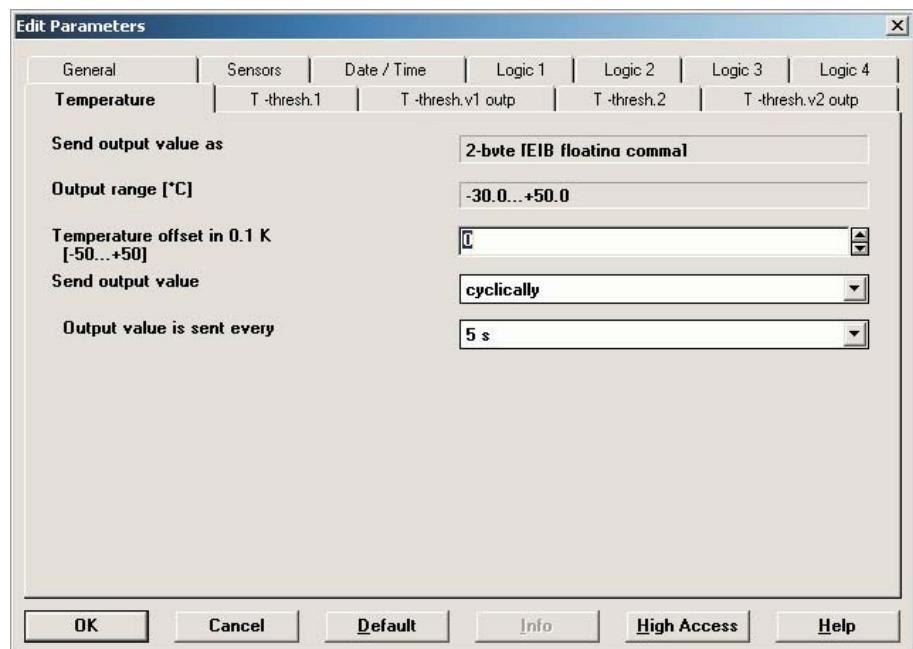


Fig. 24: Parameter window “Temperature”

Send output value as

This parameter is fixed to 2-bytes [EIB floating point].

What is the output value?

The output value designates the value which the Weather Unit sends on the bus. The Weather Unit records a sensor value, converts it according to the set parameters and sends it on the bus.

Output range [°C]

The output range is fixed to $-30.0\dots+50.0$ °C.

Temperature offset in 0.1 K $-50\dots+50$

Options: $-50\dots0\dots+50$

An additional maximum offset of ± 5 K (Kelvin) can be added to the recorded temperature with this parameter.

Note By a calibration at the required operating point (e.g. with frost protection function $+2$ °C) the accuracy in the range ± 10 °C at the operating point is enhanced to ± 1 °C.

3.2.8.1 Parameter window “Temperature threshold 1”

In the following the parameters for Logic are presented and described, which differ from the description of the sensor “Brightness right”.

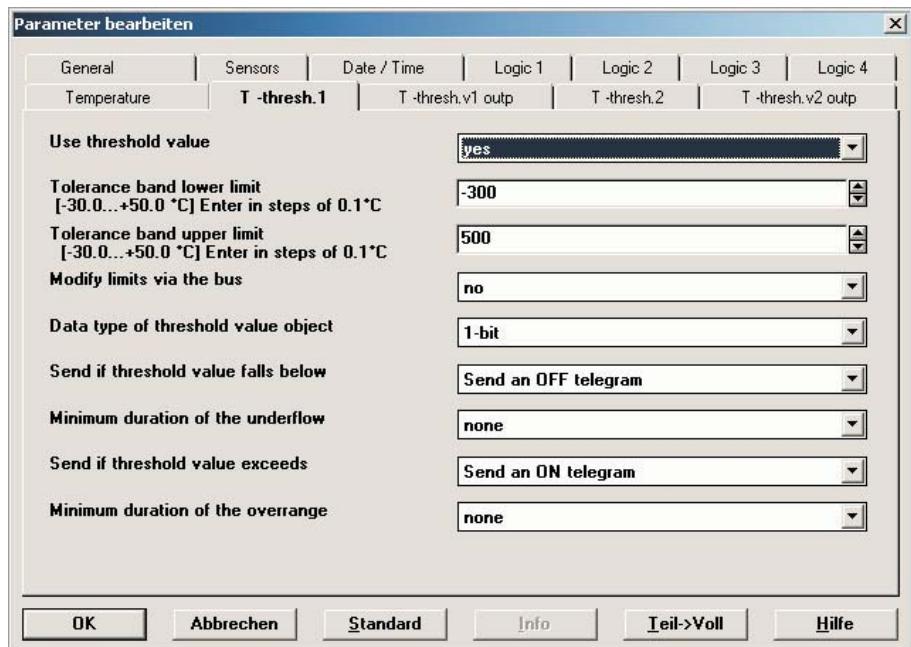


Fig. 25: Parameter window “Temperature threshold 1”

Use threshold value

Options: no/yes

This parameter defines if *Threshold value 1* should be used. If *yes* is selected the communication object “Threshold value – temperature threshold 1” appears.

Tolerance band lower limit [- 30.0...+ 50.0 °C] Enter in steps of 0.1 °C
Options: - 300...+ 500

Tolerance band upper limit [- 30.0...+ 50.0 °C] Enter in steps of 0.1 °C
Options: - 300...+ 500

The upper and lower limit is set via these two parameters.

Note Further parameter descriptions should be taken from the “Brightness sensor right” description.

3.2.9 Parameter window “Rain”

The parameters for the rain sensor are presented and described in the following.

Note The parameter window for the rain sensor is only active if “yes” has been selected in the “Rain sensor” parameter. The parameter can be found in the “Sensors” parameter window.

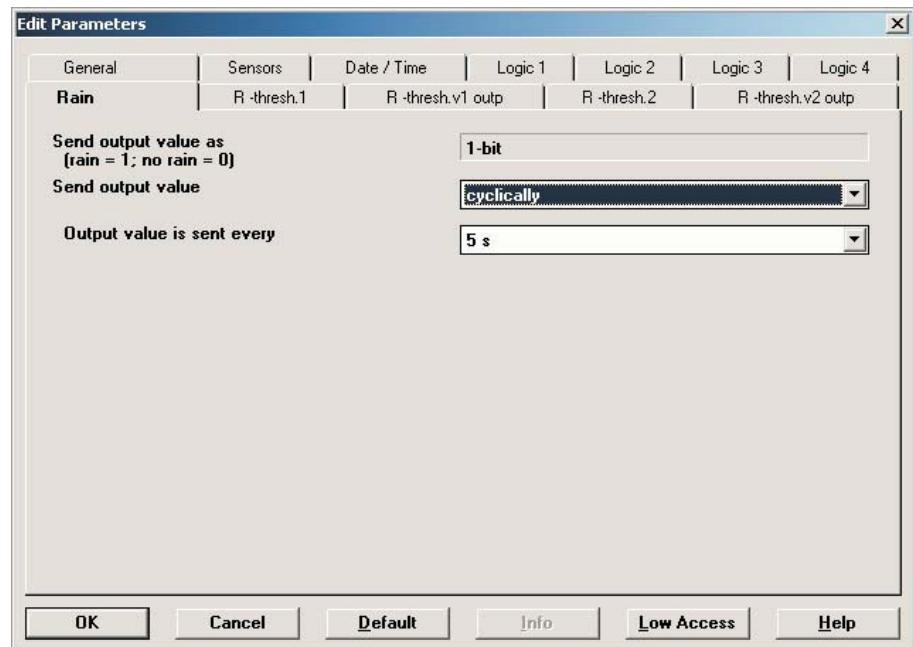


Fig. 26: Parameter window “Rain”

Send output value as (rain = 1; no rain = 0)

This parameter is fixed to 1-bit.

Send output value

Options: on request
 after a change
 cyclically
 after a change and cyclically

This parameter defines how the output value should be sent.

Option *on request* = send output value on request

If the option *on request* is selected, the communication object “Request output value – rain” appears.

As soon as a “1” is received at this communication object, the current output value is sent once to the communication object “Output value – rain”.

Option *after a change* = Send output value after a change

Option *cyclically* = Send output value cyclically

Option *after a change and cyclically* = Send output value after a change and cyclically.

In the options *after a change, cyclically* and *after a change and cyclically* have been selected with the output value parameter, the following parameters become visible.

Output value is sent every

Options: 5s/10s/30s/1min/5min/10min/30min/1h/6h/12h/24h

The interval for cyclical sending is set with this additional parameter.

3.2.9.1 Parameter window “Rain threshold 1”

In the following the parameters for Threshold value 1 are described, and also apply to threshold 2.

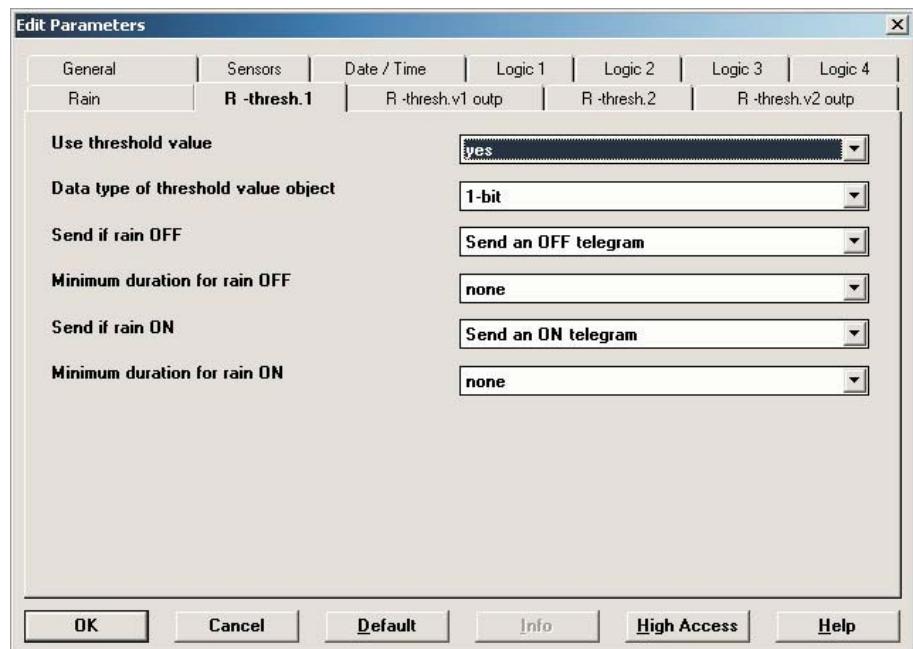


Fig. 27: Parameter window “Rain threshold 1”

Use threshold value

Options: no/yes

This parameter defines if *Threshold value 1* should be used. If yes is selected the communication object “Threshold value – Channel A” appears.

Data type of threshold value object

Options: 1-bit/1-byte [0...255]

If the option *1 bit* is set for the parameter *Data type of threshold value object*, the following parameters appear.

Send if rain OFF

Options: do not send a telegram
send an ON telegram
send an OFF telegram

Send if rain ON

Options: do not send a telegram
send an ON telegram
send an OFF telegram

Option *do not send a telegram* = No reaction occurs

Option *send an ON telegram* = Send telegram value “1”

Option *send an OFF telegram* = Send telegram value “0”

Minimum duration for rain OFF**Minimum duration for rain ON**Options: none/5s/10s/30s/1min/5min/10min/30min/1h/6h/12h/24hOption none = Send threshold value directly

With the further time options, a minimum duration can be selected.

If the send condition reverts during the minimum duration, nothing is sent.

If the option *1 byte [0...255]* is set for the parameter *Data type of threshold value object* the following parameters appear.

Send if rain OFF [0...255]Options: 0...255**Send if rain ON [0...255]**Options: 0...255

A value of 0 to 255 can be entered in single steps.

Minimum duration for rain OFF**Minimum duration for rain ON**Options: none/5s/10s/30s/1min/5min/10min/30min/1h/6h/12h/24hOption *none* = Send threshold value directly

With the further time options, a minimum duration can be selected.

If the send condition reverts during the minimum duration, nothing is sent.

3.2.9.2 Parameter window “Rain threshold 1 output”

The parameters for the output of threshold 1 are described in the following. They also apply to the output of threshold 2.

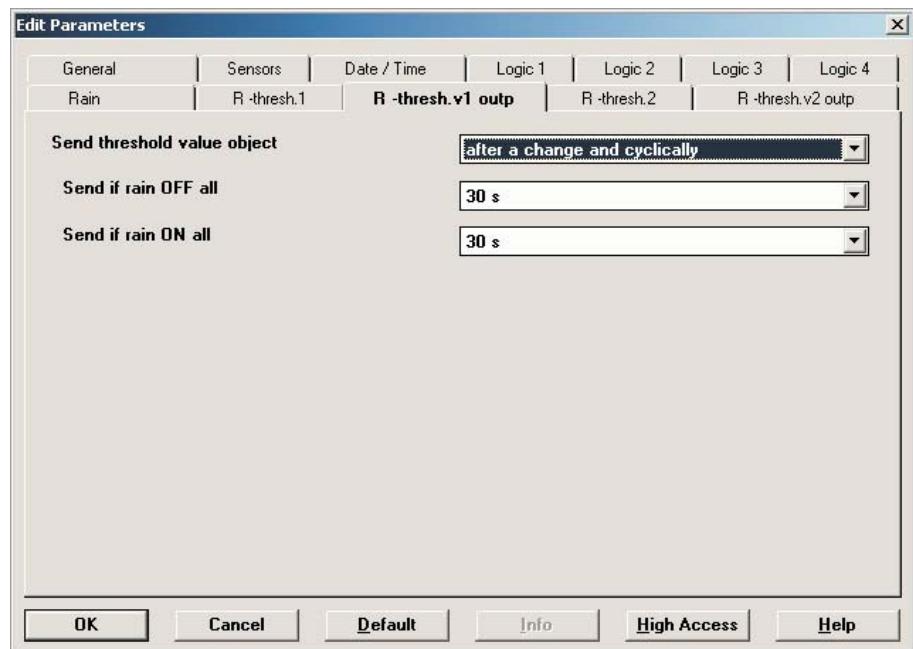


Fig. 28: Parameter window “Rain threshold 1 output”

Send threshold value object

Options: after a change
after a change and cyclically

This parameter is used to specify the send behaviour of the threshold value object.

Option *after a change* = Send threshold value object after a change

Option *after a change and cyclically* = Send threshold value object after a change and cyclically.

Note The threshold value object is sent cyclically until the value falls below or exceeds the other limit.

The following parameters appear with this option.

Send if rain OFF all

Send if rain ON all

Options: 5s/10s/30s/1min/5min/10min/30min/1h/6h/12h/24h

These two parameters are used to define the point at which cyclical sending should take place after an underflow in the lower limit or an overrange in the upper limit.

3.2.10 Parameter window “Wind speed”

In the following the parameters for Logic are presented and described, which differ from the description of the sensor “Brightness right”.

Note The parameter window for the windspeed sensor is only active if “yes” has been selected in the “Wind speed sensor” parameter. The parameter can be found in the “Sensors” parameter window.

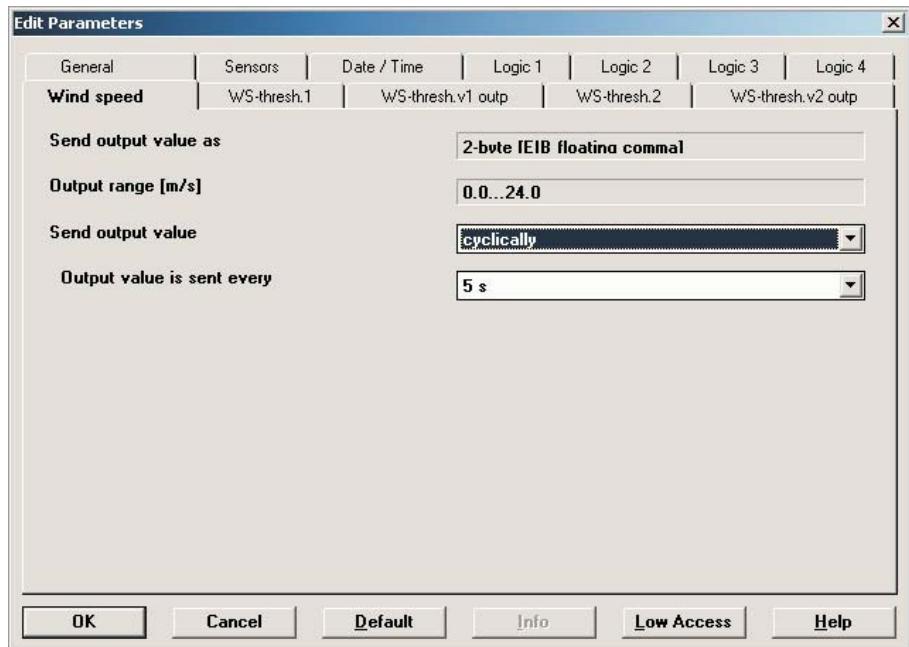


Fig. 29: Parameter window “Wind speed”

Send output value as

This parameter is fixed to 2-byte [EIB floating point].

What is the output value?

The output value designates the value which the Weather Unit sends on the bus. The Weather Unit records a sensor value, converts it according to the set parameters and sends it on the bus.

Output range [m/s]

The output range is fixed to 0.0...+ 24.0 m/s.

3.2.10.1 Parameter window**“Wind speed threshold 1”**

In the following the parameters for the threshold 1 are described and also apply to threshold 2.

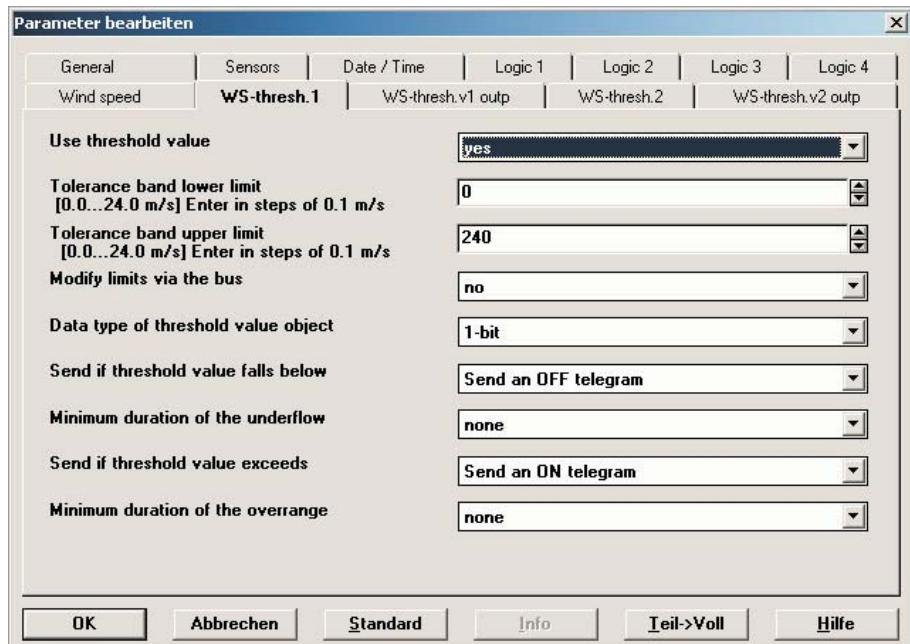


Fig. 30: Parameter window “Wind speed threshold 1”

Use threshold value

Options: no/yes

This parameter defines if *Threshold value 1* should be used. If yes is selected the communication object “Threshold value – wind speed threshold 1” appears.

Tolerance band lower limit [- 0.0...+ 24.0 m/s] Enter in steps of 0.1 m/s

Options: 0...+ 240

Tolerance band upper limit [- 0.0...+ 24.0 m/s] Enter in steps of 0.1 m/s

Options: 0...+ 240

The upper and lower limit is set via these two parameters.

Note Further parameter descriptions should be taken from the “Brightness sensor right” description.

3.2.11 Parameter window “Value memory 1”

In the following the parameters for the “value memory 1” are described. The explanations also apply for value memory 2, 3 and 4.

Note The parameter window for the value memory 1 is only active if “yes” has been selected in the “value memory” parameter. The parameter can be found in the Parameter window “General”. The following values are lost with a mains voltage failure.

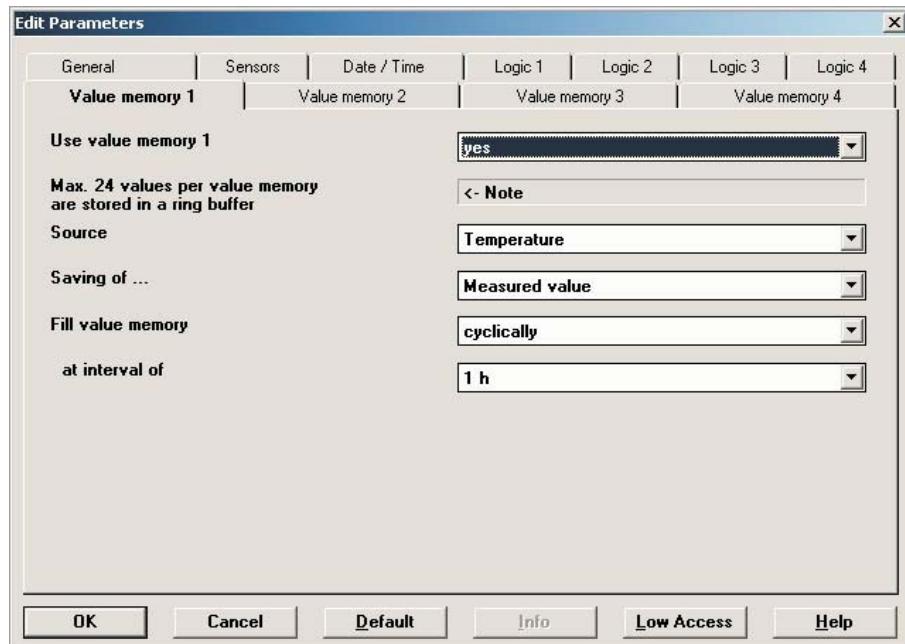


Fig. 31: Parameter window “Value memory 1”

Use value memory 1

Options: no/yes

This parameter defines if *Memory value 1* should be used. With the selection yes the communication object “Save value – value memory 1” appears.

Max. 24 values per value memory are stored in a ring buffer.
This parameter serves as a note or remark.

Note The values are saved in 2-byte-values [EIB floating point] and sent on the bus as 2-byte-values [EIB floating point].
The value memory can save up to 24 entries. If the value memory is already full during a memory process, the oldest entry will be overwritten.
One value can be saved per minute.

A time is also saved for every saved value.
The seconds value is not considered.

An example: A value is saved at 12:41:30. The time saved is 12:41:00.

Note The value memory does not function without time synchronisation.

Source

Options: Brightness right/
Brightness centre/
Brightness left/
Twilight/
Temperature/
Wind

With this parameter the sensor whose values are to be placed in the value memory are selected.

Note Rain and day/night can not be saved!

Saving of ...

Options: Measured value/
Minimum value/
Maximum value/
Average value

With this parameter you can set if the average value, minimum value or maximum value is to be saved.

What is the measured value?

The current measurement value which is on the input at the time of saving is saved.

What is the minimum value/maximum value?

The minimum/maximum value from the last save interval is saved.
If for example, every hour is selected, the minimum / maximum value of the last hour is saved.

What is the average value?

The average value of the last saving interval is saved. If for example, every 10 minutes is selected, the average value of the 10 minutes hour is saved.

Fill value memory

Options: on request/cyclical

This parameter defines how the value memory is to be filled.

Option *on request* = fill value memory on request

One value is stored per request.

If the option *cyclical* with parameter *fill memory value* is selected, the following parameters become visible.

At an interval of

Options: 10 minutes/30 minutes/1 hour

With this parameter the interval at which a value should be stored is set.

The starting point for saving the values always commences on the hour, i.e. for example if the selection *10 minutes* is made saving will commence at xx:00 and the next value will be saved at xx:10.

If for example, the application program of the Weather Unit is loaded into the device at 08:20, the parameter *fill value memory* is set to *cyclical* in intervals of *10 minutes*, the first value will be transferred commencing on the hour at 09:00 followed by the second at 09:10, etc..

Using the option *1 hour* it is possible to save a daily rhythm.

3.2.11.1 Read out value memory

no.	Function	Object name	C	R	W	T	U	Type
70	Memory number	Memory value selection	✓	✓				1 Byte
71	Number of values in memory	Memory value acknowledgement with selection	✓	✓	✓			1 Byte
72	Time and value	Value memory read request	✓	✓				1 Bit
73	Time	Value memory response	✓	✓	✓			3 Byte
74	Value	Value memory response	✓	✓	✓			2 Byte

Fig. 32: Communication objects “Read value memory”

The value memory can be read out via the communication objects. The saved value is sent on the bus in 2-byte format [EIB floating point].

Selection

Via communication object “Memory number – Select memory value” memory value 1 to 4 is selected.

Response

With the communication object “Number of values – value memory status response with selection” the current number of saved values for the selected value memory is transmitted.

Note If a non-existent value memory (0, 5...255) or a non-activated value memory is selected, the communication object “Number of values – value memory status response with selection” responds with the value 255.

Sending first value and time

After selection of the value memory the first saved value and the corresponding time are automatically sent to the communication object “Time – value memory response” and the “Value – value memory response” value is sent on the bus.

Sending further values and times

Further values and times can be requested via the communication object “Time and Value – Value memory read request”.

After a successful read request the saved time is sent to the communication object “Time – value memory response” and the communication object “Value – value memory response” is sent. A “1” ensures reading in the forward direction and a “0” in the reverse direction.

Note If at the time of a request only 8 of the 24 memory elements are used and the first 8 values have been requested, the first saved value will again be displayed at the next read request. The values in the memory can not be overwritten, they can not be erased.

Workflow

1 Select	1 ,2 ,3 or 4 (0, 5...255 or non activated value memory)
2 Response	0...24 (value 255 = value memory not available)
3 First value corresponding time	automatically sent
4 Read request	automatically sent further values and time read Telegram “1” read forward Telegram “0” read backwards

3.3 Communication objects

3.3.1 Brightness right

no.	Function	Object name	C	R	W	T	U	Type
0	Output value	Brightness right	✓	✓	✓			2 Byte
1	Request output value	Brightness right	✓	✓				1 Bit
2	Threshold	Brightness right threshold 1	✓	✓	✓			1 Bit
3	Modify	Brightness Right Threshold 1 lower limit	✓	✓	✓			2 Byte
4	Modify	Brightness Right Threshold 1 upper limit	✓	✓	✓			2 Byte
5	Threshold	Brightness right threshold 2	✓	✓	✓			1 Bit
6	Modify	Brightness Right Threshold 2 lower limit	✓	✓	✓			2 Byte
7	Modify	Brightness Right Threshold 2 upper limit	✓	✓	✓			2 Byte

Fig. 33: Communication objects "Brightness right"

No.	Function	Object name	Data type	Flags
0	Output value	Brightness right	EIS 5, 2 Byte DPT 9.004	C, R, T
This communication object is used to send the output value to the bus.				
1	Request output value	Brightness right	EIS 1, 1 Bit DPT 1.017	C, W
This communication object appears if the output value "on request" is to be sent. If a "1" is received by this communication object, the current output value is sent once to the "communication object – brightness right".				
2	Threshold	Brightness right threshold value 1	EIS variable DPT variable	C, R, T
As soon as the set threshold value is exceeded or below the limit, it is possible to send a 1-bit-value [0/1] EIS 1 DPT 1.001 1-byte-value [0...+ 255] EIS 6 DPT 5.010				
The object value depends on the parameter "Data type of threshold value object" (1-bit, 1-byte).				
The parameter can be found in the parameter window "BR – Threshold value 1".				
3	Modify	Brightness right threshold value 1 lower limit	EIS 5, 2 Byte DPT 9.004	C, R, T
4	Modify	Brightness right threshold value 1 upper limit		
The upper and lower limit of threshold value 1 can be changed via the bus. In case of bus- and/or main voltage failure the changed threshold value limits are stored. With a new download of the application program the threshold value limits will be overwritten.				

Table 5: Communication objects 0 to 4 "brightness right"

No.	Function	Object name	Data type	Flags
5	Threshold	Brightness right one threshold value 2	EIS variable DPT variable	Data type
As soon as the set threshold value is exceeded or below the limit, it is possible to send a 1-bit-values [0/1] EIS 1 DPT 1.001 1-byte-values [0...+ 255] EIS 6 DPT 5.010				
The object value depends on the parameter "Data type of threshold value object" (1-bit, 1-byte).				
The parameter can be found in the parameter window "BR – Threshold value 2".				
6	Modify	Brightness right one threshold value 2 lower limit	EIS 5, 2 Byte DPT 9.004	C, R, T
7	Modify	Brightness right threshold value 2 upper limit		
The upper and lower limit of threshold value 2 can be changed via the bus. In case of bus- and/or main voltage failure the changed threshold value limits are stored. With a new download of the application program the threshold value limits will be overwritten.				

Table 6: Communication objects 5 to 7 "brightness right"

3.3.2 Brightness centre

<u>No.</u>	<u>Function</u>	<u>Object name</u>	<u>C</u>	<u>R</u>	<u>W</u>	<u>T</u>	<u>U</u>	<u>Type</u>
8	Output value	Brightness centre	✓	✓	✓			2 Byte
9	Request output value	Brightness centre	✓	✓				1 Bit
10	Threshold	Brightness centre threshold 1	✓	✓	✓			1 Bit
11	Modify	Brightness Centre Threshold 1 lower limit	✓	✓	✓			2 Byte
12	Modify	Brightness Centre Threshold 1 upper limit	✓	✓	✓			2 Byte
13	Threshold	Brightness centre threshold 2	✓	✓	✓			1 Bit
14	Modify	Brightness Centre Threshold 2 lower limit	✓	✓	✓			2 Byte
15	Modify	Brightness Centre Threshold 2 upper limit	✓	✓	✓			2 Byte

Fig. 34: Communication objects “Brightness centre”

No.	Function	Object name	Data type	Flags
8	See communication objects 0...7	Brightness centre		
...				
15				

Table 7: Communication objects 8 to 15 “brightness centre”

3.3.3 Brightness left

<u>No.</u>	<u>Function</u>	<u>Object name</u>	<u>C</u>	<u>R</u>	<u>W</u>	<u>T</u>	<u>U</u>	<u>Type</u>
16	Output value	Brightness left	✓	✓	✓			2 Byte
17	Request output value	Brightness left	✓	✓				1 Bit
18	Threshold	Brightness left threshold 1	✓	✓	✓			1 Bit
19	Modify	Brightness Left Threshold 1 lower limit	✓	✓	✓			2 Byte
20	Modify	Brightness Left Threshold 1 upper limit	✓	✓	✓			2 Byte
21	Threshold	Brightness left threshold 2	✓	✓	✓			1 Bit
22	Modify	Brightness Left Threshold 2 lower limit	✓	✓	✓			2 Byte
23	Modify	Brightness Left Threshold 2 upper limit	✓	✓	✓			2 Byte

Fig. 35: Communication objects “Brightness left”

No	Function	Object name	Data type	Flags
16	See communication objects 0...7	Brightness left		
...				
23				

Table 8: Communication objects 16 to 23 “brightness left”

3.3.4 Twilight

<u>No.</u>	<u>Function</u>	<u>Object name</u>	<u>C</u>	<u>R</u>	<u>W</u>	<u>T</u>	<u>U</u>	<u>Type</u>
24	Output value	Twilight	✓	✓	✓			2 Byte
25	Request output value	Twilight	✓	✓				1 Bit
26	Threshold	Twilight threshold value 1	✓	✓	✓			1 Bit
27	Modify	Twilight threshold value 1 lower limit	✓	✓	✓			2 Byte
28	Modify	Twilight threshold value 1 upper limit	✓	✓	✓			2 Byte
29	Threshold	Twilight threshold value 2	✓	✓	✓			1 Bit
30	Modify	Twilight threshold value 2 lower limit	✓	✓	✓			2 Byte
31	Modify	Twilight threshold value 2 upper limit	✓	✓	✓			2 Byte

Fig. 36: Communications objects “twilight”

No.	Function	Object name	Data type	Flags
24	See communication objects 0...7	Twilight		
...				
31				

Table 9: Communication objects 24 to 31 “twilight”

3.3.5 Day / Night

No.	Function	Object name	C	R	W	T	U	Type
32	Output value	Day/Night	✓	✓	✓			1 Bit
33	Request output value	Day/Night	✓		✓			1 Bit
34	Threshold	Day/Night threshold value 1	✓	✓	✓			1 Bit
37	Threshold	Day/Night threshold value 2	✓	✓	✓			1 Bit

Fig. 37: Communication objects "Day/Night"

No.	Function	Object name	Data type	Flags
32	Output value	Day/Night	EIS 1, 1 Bit DPT 1.001	C, R, T
This communication object is used to send the output value to the bus. The output value is fixed to 1-bit. Telegram value "0" = day Telegram value "1" = night				
33	Request output value	Day/Night	EIS 1, 1 Bit DPT 1.017	C, W
This communication object appears if the output value "on request" is to be sent. If a "1" is received by this communication object, the current output value is sent once to the communication object "Output value – Day/Night".				
34	Threshold	Day/Night threshold value 1	EIS variable DPT variable	C, R, T
As soon as the set threshold value is exceeded or below the limit, it is possible to send a 1-bit-value [0/1] EIS 1 DPT 1.001 1-byte-value [0...+ 255] EIS 6 DPT 5.010				
The object value depends on the parameter "Data type of threshold value object" (1-bit, 1-byte).				
The parameter can be found in the parameter window "Day/Night-Threshold value 1".				
35	Communication objects not used			
36				
37	see communication object 34	Day/Night threshold value 2		
38	Communication objects not used			
39				

Table 10: Communication objects 32 to 39 "Day/Night"

3.3.6 Temperature

no.	Function	Object name	C	R	W	T	U	Type
40	Output value	Temperature	✓	✓	✓			2 Byte
41	Request output value	Temperature	✓	✓				1 Bit
42	Threshold	Temperature threshold value 1	✓	✓	✓			1 Bit
43	Modify	Temperature threshold value 1 lower limit	✓	✓	✓			2 Byte
44	Modify	Temperature threshold value 1 upper limit	✓	✓	✓			2 Byte
45	Threshold	Temperature threshold value 2	✓	✓	✓			1 Bit
46	Modify	Temperature threshold value 2 lower limit	✓	✓	✓			2 Byte
47	Modify	Temperature threshold value 2 upper limit	✓	✓	✓			2 Byte

Fig. 38: Communications objects "Temperature"

No.	Function	Object name	Data type	Flags
40	Output value	Temperature	EIS 5, 2 Byte DPT 9.001	C, R, T
This communication object is used to send the output value to the bus. The output value is fixed to 2-bytes.				
41	Request output value	Temperature	EIS 1, 1 Bit DPT 1.017	C, W
This communication object appears if the output value "on request" is to be sent. If a "1" is received by this communication object, the current output value is sent once to the communication object "Output value – Temperature".				
42	Threshold	Temperature threshold value 1	EIS variable DPT variable	C, R, T
As soon as the set threshold value is exceeded or below the limit, it is possible to send 1-Bit-values [0/1] EIS 1 DPT 1.001 1-Byte-values [0...+255] EIS 6 DPT 5.010 The object value depends on the parameter "Data type of threshold value object" (1-bit, 1-byte). The parameter can be found in the parameter window "Temperature–Threshold value 1".				
43	Modify	Temperature threshold value 1 lower limit	EIS 5, 2 Byte DPT 9.001	C, R, T
44	Modify	Temperature threshold value 1 upper limit		
The upper and lower limit of threshold value 1 can be changed via the bus. In case of bus- and/or main voltage failure the changed threshold value limits are stored. With a new download of the application program the threshold value limits will be overwritten. The data type of these communication objects has a fixed setting to 2-bytes.				
45	See communication object 42			
46	See communication object 43 and 44			

Table 11: Communication objects 40 to 47 "Temperature"

3.3.7 Rain

no.	Function	Object name	C	R	W	T	U	Type
48	Output value	Rain	✓	✓	✓			1 Bit
49	Request output value	Rain	✓	✓				1 Bit
50	Threshold	Rain threshold value 1	✓	✓	✓			1 Bit
53	Threshold	Rain threshold value 2	✓	✓	✓			1 Bit

Fig. 39: Communication objects "Rain"

No.	Function	Object name	Data type	Flags
48	Output value	Rain	EIS 1, 1 Bit DPT 1.001	C, R, T
This communication object is used to send the output value to the bus. The output value is fixed to 1-bit. Telegram value "0" = no rain Telegram value "1" = rain				
49	Request output value	Rain	EIS 1, 1 Bit DPT 1.017	C, W
This communication object appears if the output value "on request" is to be sent. If a "1" is received by this communication object, the current output value is sent once to the communication object "Output value – Rain".				
50	Threshold	Rain threshold value 1	EIS variable DPT variable	C, R, T
As soon as the set threshold value is exceeded or below the limit, it is possible to send 1-bit-values [0/1] EIS 1 DPT 1.001 1-byte-values [0...+ 255] EIS 6 DPT 5.010 The object value depends on the parameter "Data type of threshold value object" (1-bit, 1-byte). The parameter can be found in the parameter window "Rain–Threshold value 1".				
51	Communication objects not used			
52				
53	See communication object 50	Rain threshold value 2		
54	Communication objects not used			
55				

Table 12: Communication objects 48 to 55 "Rain"

3.3.8 Wind speed

No.	Function	Object name	C	R	W	T	U	Type
56	Output value	Wind speed	✓	✓	✓			2 Byte
57	Request output value	Wind speed	✓	✓				1 Bit
58	Threshold	Wind speed threshold 1	✓	✓	✓			1 Bit
59	Modify	Wind speed threshold value 1 lower limit	✓	✓	✓			2 Byte
60	Modify	Wind speed threshold value 1 upper limit	✓	✓	✓			2 Byte
61	Threshold	Wind speed threshold 2	✓	✓	✓			1 Bit
62	Modify	Wind speed threshold value 2 lower limit	✓	✓	✓			2 Byte
63	Modify	Wind speed threshold value 2 upper limit	✓	✓	✓			2 Byte

Fig. 40: Communication objects "Wind speed"

No.	Function	Object name	Data type	Flags
56	Output value	Wind speed	EIS 5, 2 Byte DPT 9.005	C, R, T
This communication object is used to send the output value to the bus.				
57	Request output value	Wind speed	EIS 1, 1 Bit DPT 1.017	C, W
This communication object appears if the output value "on request" is to be sent. If a "1" is received by this communication object, the current output value is sent once to the "communication object – Wind speed".				
58	Threshold	Wind speed threshold value 1	EIS variable DPT variable	C, R, T
As soon as the set threshold value is exceeded or below the limit, it is possible to send a 1-bit-value [0/1] EIS 1 DPT 1.001 1-byte-value [0...+ 255] EIS 6 DPT 5.010				
The object value depends on the parameter "Data type of threshold value object" (1-bit, 1-byte).				
The parameter can be found in the parameter window "WS – Threshold value 1".				
59	Modify	Wind speed threshold value 1 lower limit	EIS 5, 2 Byte DPT 9.005	C, R, T
60	Modify	Wind speed threshold value 1 upper limit		
The upper and lower limit of threshold value 1 can be changed via the bus. In case of bus- and/or main voltage failure the changed threshold value limits are stored. With a new download of the application program the threshold value limits will be overwritten.				

Table 13: Communication objects 56 to 60 "Wind speed"

No.	Function	Object name	Data type	Flags
61	See communication object 58	Wind speed one threshold value 2		
62	See communication object 59, 60	Wind speed one threshold value 2 lower limit		
63		Wind speed threshold value 2 upper limit		

Table 14: Communication objects 61 to 63 "Wind speed"

3.3.9 Logic 1, 2, 3 and 4

No.	Function	Object name	C	R	W	T	U	Type
64	Send output	Logic 1	✓	✓	✓			1 Bit
65	Send output	Logic 2	✓	✓	✓			1 Bit
66	Send output	Logic 3	✓	✓	✓			1 Bit
67	Send output	Logic 4	✓	✓	✓			1 Bit
68	Input 1	Logic	✓	✓	✓			1 Bit
69	Input 2	Logic	✓	✓	✓			1 Bit

Fig. 41: Communication objects "Logic"

No.	Function	Object name	Data type	Flags
64	Send output	Logic 1	EIS 1, 1 Bit DPT 1.002	C, R, T
The logical result of logic 1 is sent with this communication object.				
65	See communication object 64	Logic 2		
66	See communication object 64	Logic 3		
67	See communication object 64	Logic 4		
68	Input 1	Logic	EIS 1, 1 Bit DPT 1.002	C, W, Upd
69	Input 2	Logic		
Both of these communication objects can be used as external inputs for the internal logic. If a telegram with the value "0" or "1" is received with these communication objects the internal logic is assigned with the value "0" or "1".				

Table 15: Communication objects 64 to 69 "Logic"

3.3.10 Value memory

no.	Function	Object name	C	R	W	T	U	Type
70	Memory number	Memory value selection	✓	✓				1 B
71	Number of values in memory	Memory value acknowledgement with selection	✓	✓	✓			1 B
72	Time and value	Value memory read request	✓	✓				1 Bi
73	Time	Value memory response	✓	✓	✓			3 B
74	Value	Value memory response	✓	✓	✓			2 B
75	Save value	Value memory 1	✓	✓				1 Bi
76	Save value	Value memory 2	✓	✓				1 Bi
77	Save value	Value memory 3	✓	✓				1 Bi
78	Save value	Value memory 4	✓	✓				1 Bi

Fig. 42: Communication objects "Value memory"

No.	Function	Object name	Data type	Flags
70	Memory number	Memory value selection	EIS 6, 1 Byte DPT 5.010	C, W
This communication object is used to select the value memories 1 to 4.				
Telegram value "1" = value memory 1 Telegram value "2" = value memory 2 Telegram value "3" = value memory 3 Telegram value "4" = value memory 4				
If a non available value memory (0, 5...255) or a non-activated value memory is selected, the communication object "Number of values – value memory status response with selection" responds with the value 255.				
71	Number of values in memory	Value memory feedback on selection	EIS 6, 1 Byte DPT 5.010	C, R, T
With the communication object the maximum number of saved values for the selected value memory is transferred.				
72	Time and value read request	Value memory	EIS 1, 1 Bit DPT 1.017	C, W
The communication object is used to read out the saved values from the selected value memory. Telegram value "1" = read forwards Telegram value "0" = read backwards				
73	Time	Value memory response	EIS 3, 3 Byte DPT 10.001	C, R, T
After a successful read request the saved time sends this communication object on the bus.				
74	Value	Value memory response	EIS 5, 2 Byte DPT variable	C, R, T
After a successful read request the saved time is sent to this communication object on the bus. If a non available value memory (0, 5...255) or a non-activated value memory is selected, the communication object "Number of values – value memory status response with selection" responds with the value 255.				

Table 16: Communication objects 70 to 74 "Value memory"

Nr.	Function	Object name	Data type	Flags
75	Save value	Value memory 1	EIS 1, 1 Bit DPT 1.003	C, W
This communication object is only visible if in parameter "fill value memory" on request has been selected. With this communication object values can be saved on request.				
76	See communication object 75	Value memory 2		
77	See communication object 75	Value memory 3		
78	See communication object 75	Value memory 4		

Table 17: Communication objects 75 to 78 "Value memory"

3.3.11 Date/Time (master)

no.	Function	Object name	C	R	W	T	U	Ty
79	Send	Date	✓	✓	✓			3 B
80	Send	Time	✓	✓	✓			3 B
81	Received	Time request	✓	✓				1 B

Fig. 43: Communication objects "Date/time (master)"

No.	Function	Object name	Data type	Flags
79	Send	Date	EIS 4, 3 Byte DPT 10.001	C, R, T
This communication object is used to send the date on the bus.				
80	Send	Time	EIS 3, 3 Byte DPT 11.001	C, R, T
This communication object is used to send the time on the bus.				
81	Received	Time request	EIS 3, 1 Bit DPT 1.001	C, T
This communication is used to receive the time request.				
Telegram value "1" = receive Telegram value "0" = do not receive				

Table 18: Communication objects 79 to 81 "Date/time (master)"

3.3.12 Date/Time (slave)

no.	Function	Object name	C	R	W	T	U	Ty
79	Received	Date	✓	✓	✓			3 E
80	Received	Time	✓	✓	✓			3 E
81	Send	Time request	✓	✓				1 E

Fig. 44: Table 18: Communication objects "Date/time (slave)"

No.	Function	Object name	Data type	Flags
79	Received	Date	EIS 4, 3 Byte DPT 10.001	C, W, Upd
This communication is used to receive the date.				
80	Received	Time	EIS 3, 3 Byte DPT 11.001	C, W, Upd
This communication is used to receive the time.				
81	Send	Time request	EIS 3, 1 Bit DPT 1.001	C, T
This communication object is used to request the date and time after voltage recovery and programming.				
Telegram value "1" = send Telegram value "0" = do not send				

Table 19: Communication objects 79 to 81 "Date/time (slave)"

3.3.13 General

no.	Function	Object name	C	R	W	T	U	Type
82	In operation	System	✓	✓	✓			1 Bit
83	Status byte	System	✓	✓	✓			1 Byte
84	Sensor malfunction	System	✓	✓	✓			1 Bit
85	no time synchronization	System	✓	✓	✓			1 Bit

Fig. 45: Communication objects "General"

No.	Function	Object name	Data type	Flags
82	In operation	System	EIS 1, 1 Bit DPT 1.003	C, R, T

This communication object is active if "yes" has been selected for the parameter cyclic "In operation – send telegram".

If the communication object is active, it cyclically sends a "1" telegram. This communication object is sent once when the device is started and then cyclically after the set send delay.

The presence of the Weather Unit can be monitored with this communication object.

83	Status byte	System	EIS none DPT none	C, R, T
----	-------------	--------	----------------------	---------

The communication object is used to determine if the Weather Sensor has failed, if a communication fault has occurred between the Weather Unit and Weather Sensor exists, if

Bit sequence: 76543210

Bit 7: not assigned always "0"

Bit 6: not assigned always "0"

Bit 5: under voltage V+ < 20V

"0": OK > 20V

"1": not OK < 20V

Bit 4: communication with Weather Unit interrupted.

"0": communication available

"1": no communication available

Bit 3: not assigned always "0"

Bit 2: no valid time information (device has not yet been synchronised)

Telegram value "0": time available

"1": no time available

Bit 1: no time synchronisation (after the start or a failure exceeding more than 24h),

Time may diverge

Telegram value "0": time synchronisation available

"1": no time synchronisation available

Bit 0: no DCF signal

Telegram value "0": DCF signal available

"1": no DCF signal available

The communication object sends with changes and can be read via the Value-Read command. This communication object is sent once when the device is started and after the set send delay.

A table of values is located in the Appendix.

If malfunction free the value of the status byte is zero.

Table 20: Communication objects 82 and 83 "General"

No.	Function	Object name	Data type	Flags
84	Weather Sensor malfunction	System	EIS 1, 1 Bit DPT 1.003	C, R, T
The communication object is used to determine if the Weather Sensor has failed. Telegram value "0" = Weather Sensor has not failed Telegram value "1" = Weather Sensor has failed				
This communication object should always be read and displayed, to ensure that downstream systems can be protected if the weather sensor fails, e.g. shutters.				
85	no time synchronisation	System	EIS 1, 1 Bit DPT 1.003	C, R, T
This communication object is active, if the options in the parameter mode 'Master (synchronising via sensor)' 'Internal (synchronising via sensor)' 'Slave (synchronising via bus)' are selected in the date/time parameter window. Telegram value "0" = time synchronisation available Telegram value "1" = no time synchronisation available				

Table 21: Communication objects 84 and 85 "General"

Note	After successful commissioning of the Weather Unit and Weather Sensor, the communication object "No time synchronisation" should be read. This verifies if the radio receiver can receive a valid DCF signal. With good reception, the sensor will required about 2-3 minutes to synchronise to the signal.
-------------	--

4 Planning and application

4.1 Weather Unit

The Weather Unit WZ/S 1.1 can be used wherever parts of installations need to be protected against climatic influences or monitored. The recorded data can e.g., be displayed on a visualisation terminal and the operating personnel are thus informed precisely about the weather conditions.

The following sensors are used to protect, monitor and control a building:

- Twilight sensor for switching external and interior lighting systems on and off and for targeted use as an energy-saving measure through the detection of the start and end of the day.
- Brightness sensor for shading windows and facades (if necessary a direction-dependent brightness sensor for controlling several facades and for lighting control).
- Rain sensor for protecting awnings, roller blinds and shutters as well as fanlights and ventilation flaps.
- Temperature sensor for regulating heating and air conditioning systems.
- Wind speed sensor for protecting shutter systems.

4.2 Weather Sensor

When planning a Weather Unit with sensors, specific requirements should be taken into account and checked on site:

- Where can the Weather Sensors be fixed on the building e.g. on roof structures of lifts, air conditioning plants?
- Can the sensors be “disrupted” by the structures e.g. by an extraction system?
- Is the mounting position of the Weather Sensors free of shadows e.g. caused by the growth of a tree?
- Are additional structures required for fixing?
- Is an installation of the cables on the building guaranteed?
- Is the cable routing from the Weather Unit to the sensor ensured e.g. are the cables protected from UV rays?
- The onsite lightning protection measures must be considered during mounting.

Note

The points above are a selection of the criteria required to install Weather Sensors, without claiming to be fully comprehensive. Further descriptions can be found in chapter 2.

4.3 Description of the threshold value function

How does the threshold value function?

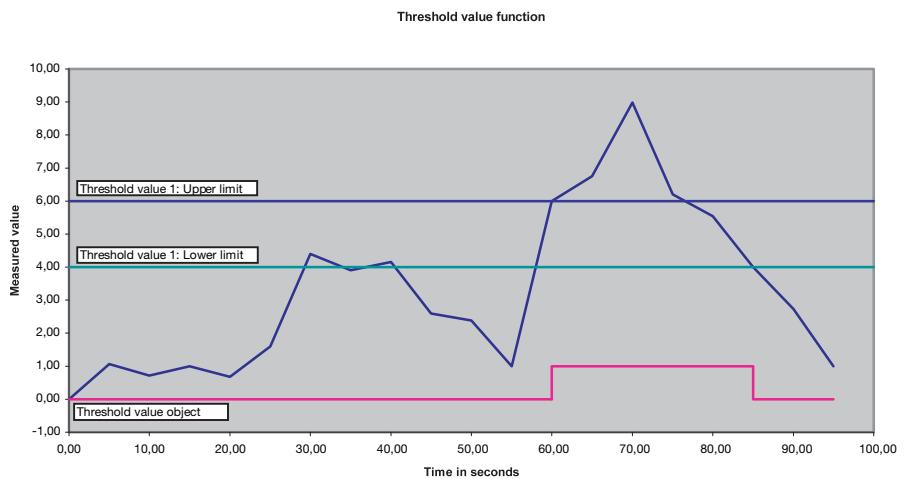


Fig. 46: Threshold value function

In the example diagram above, it can be seen that the measured value begins with a zero value and the communication object for the threshold value 1 has the value „0“. This value can be cyclically sent onto the bus if the relevant parameter in the application program is set.

As long as the measured value **does not** exceed the upper limit of the threshold value 1, the communication object threshold value 1 will remain „0“.

As soon as the measured value exceeds the upper limit of the threshold value 1, the communication object threshold will change value to „1“.

The communication object threshold value 1 will remain „1“, until the measured value once again falls below the lower limit of the threshold value 1.

4.4 Planning example 1

1. A user wishes to control the shutter in dependance on the position of the sun (east, south and west). At more than 30 kLux the shutters in the east should move down, those in the south at more than 25 kLux and those in the west at more than 35 kLux. All shutters should open under 15 kLux. The respective signals should be present for at least 5 minutes.
2. At a wind speed exceeding 9 m/s all shutters in the house must open and close again when the wind speed drops below 6 m/s. The signal should be present for at least 1 minute.
3. The sunblinds on the terrace should retract when it rains. The “rain” signal should be present for at least 30 seconds. It should be rain free for at least 5 minutes before the sunblinds re-emerge.
4. The information day/night should be used for reducing the heating temperature at night. The signal should be present for at least 10 minutes.
5. In the open the garden and pond lighting should be switched on after twilight when the following values are present:
When the value falls below 300 Lux, a 1-byte value of 200 should be sent in order to dim the pond lighting to approx. 80 %. Otherwise the pond lighting should be set to the maximum brightness value.
When the value falls below 850 Lux, the lights for the walnut tree should be switched on and switched off when the value exceeds 850 Lux.
The signals for the threshold values should be fixed for at least 1 minute.
6. The shutters should be protected from minus temperatures (less than 3 °C), i.e. they should be retracted. The shutters should automatically move into place at + 20 °C to prevent the house from “heating up” unnecessarily. Furthermore, the fanlights should open automatically in the staircase at + 30 °C. The fanlights should not be continually closed and opened but only if the temperature is fixed above 30 °C for longer than 1 minute. They should be automatically closed as soon as the temperature drops to + 25 °C again for longer than 30 seconds.
7. The recorded weather data should update on the display every 10 seconds. All set threshold values must be changeable by the user via the bus and should be sent every minute to the bus.
8. Furthermore, the user can save the weather data over the course of the day. The values for brightness centre is used as the average value, the temperature is used as the minimum value and the wind speed as the maximum value stored once an hour. The values should be individually readable at the push of a button.

Settings for the parameter windows “General and Sensors”

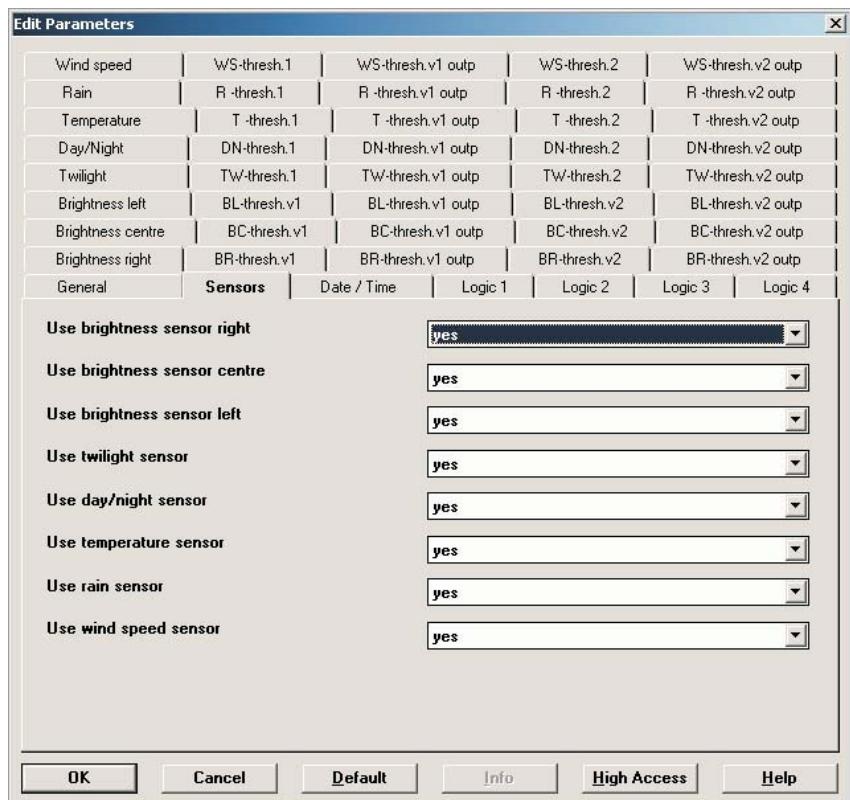


Fig. 47: Planning example 1 settings for the parameter window “Sensor”

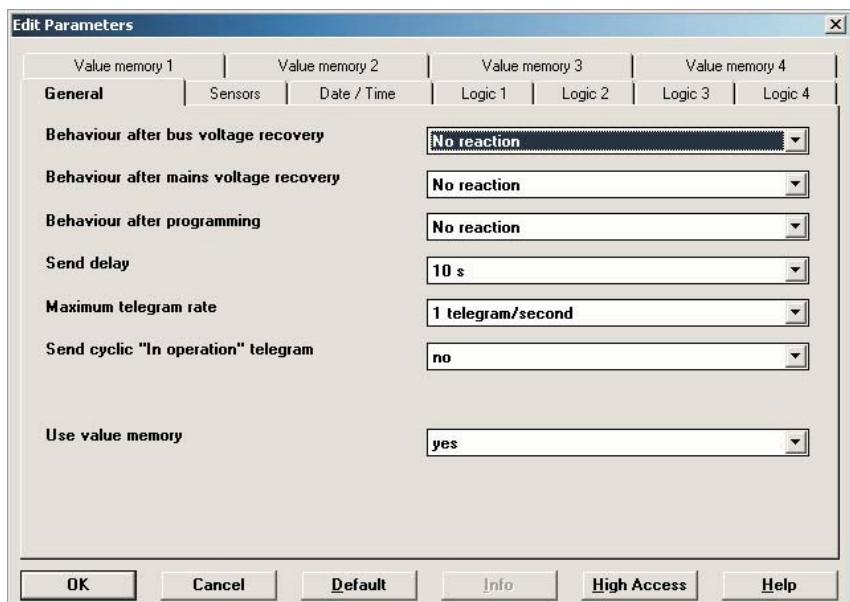


Fig. 48: Planning example 1 settings for the parameter window “General”

For point 1:

Settings for the parameter window “Brightness left (east)”,
“Threshold value 1” and “Threshold value 1 output”

Fig. 49: Planning example 1 settings for the parameter window “Brightness left”

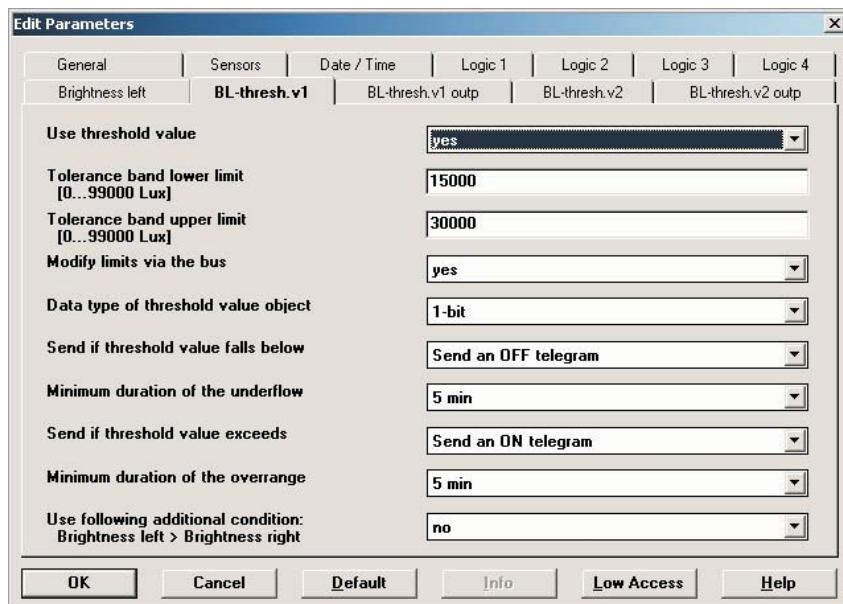


Fig. 50: Planning example 1 settings for the parameter window “Brightness left threshold 1”

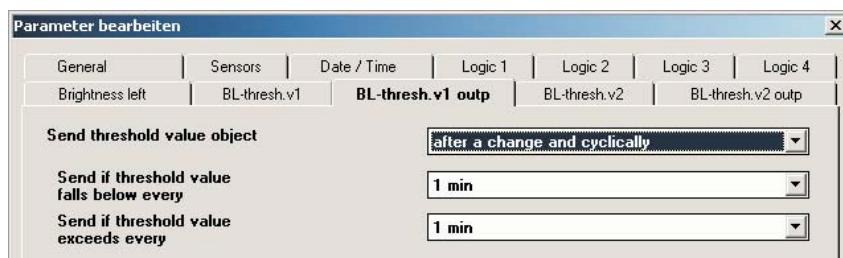


Fig. 51: Planning example 1 settings for the parameter window “Brightness left threshold 1 output”

Settings for the parameter window “Brightness centre (south)”, “Threshold value 1” and “Threshold value 1 output”

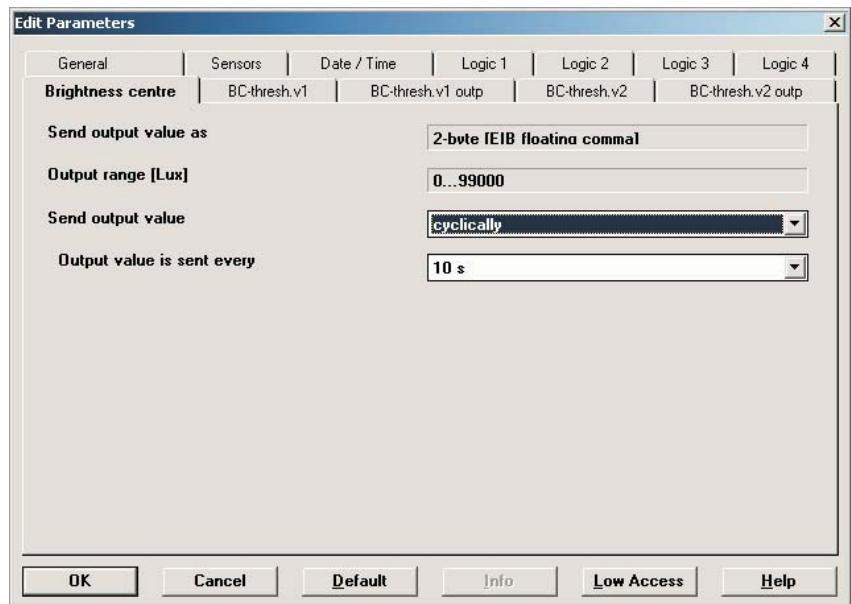


Fig. 52: Planning example 1 settings for the parameter window “Brightness centre”

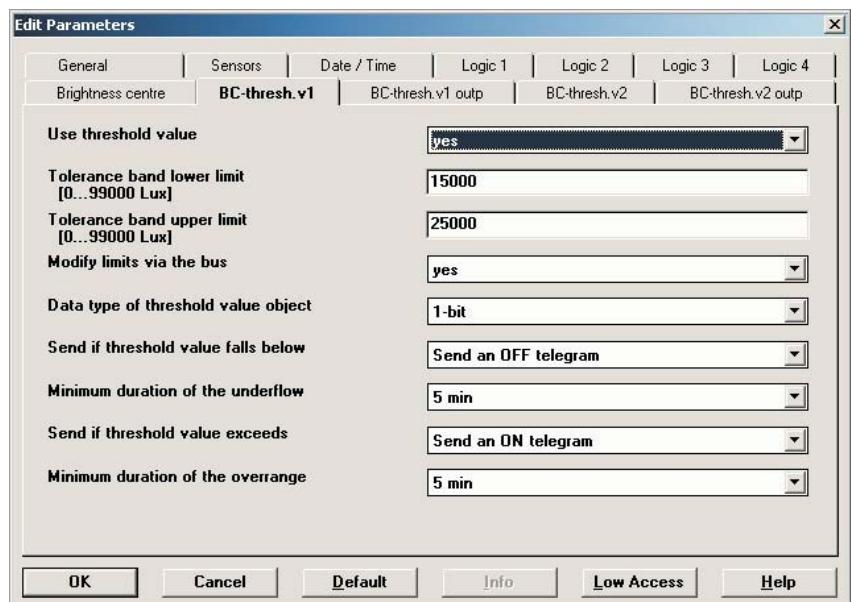


Fig. 53: Planning example 1 settings for the parameter window “Brightness centre threshold 1”

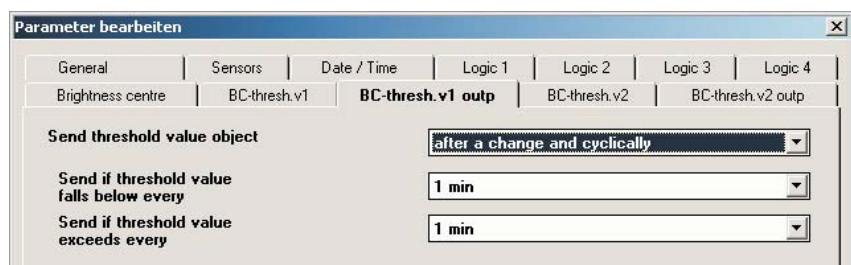


Fig. 54: Planning example 1 settings for the parameter window “Brightness centre threshold 1 output”

Settings for the parameter window “Brightness right (west)”, “Threshold value 1” and “Threshold value 1 output”

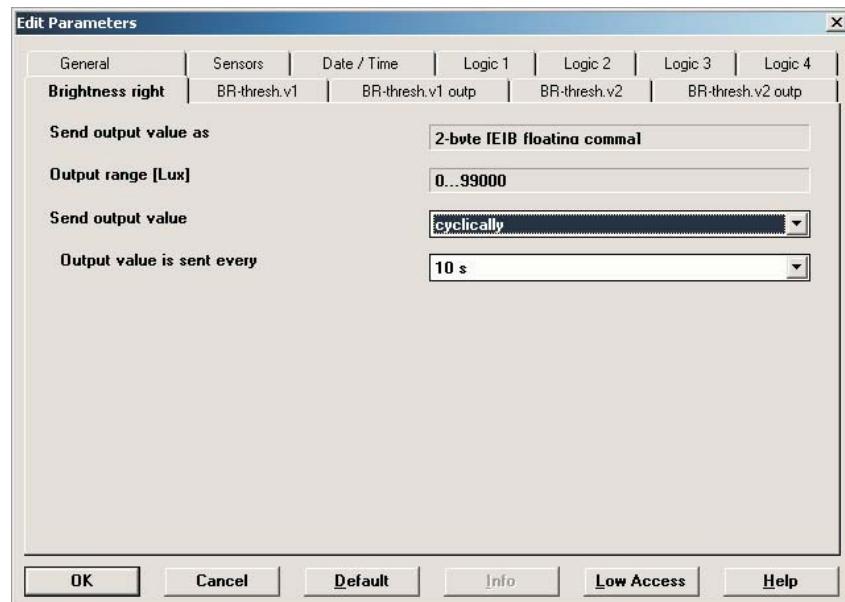


Fig. 55: Planning example 1 settings for the parameter window “Brightness right”

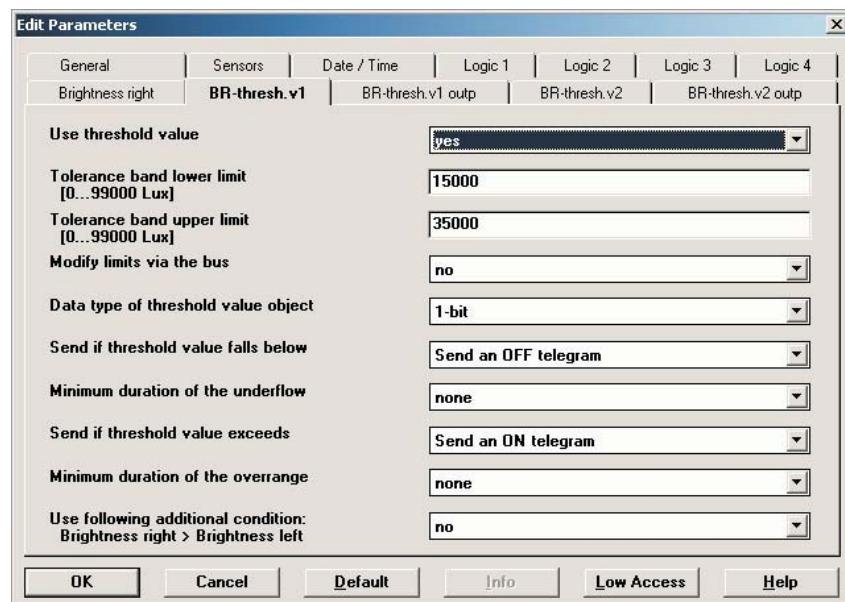


Fig. 56: Planning example 1 settings for the parameter window “Brightness right threshold 1”

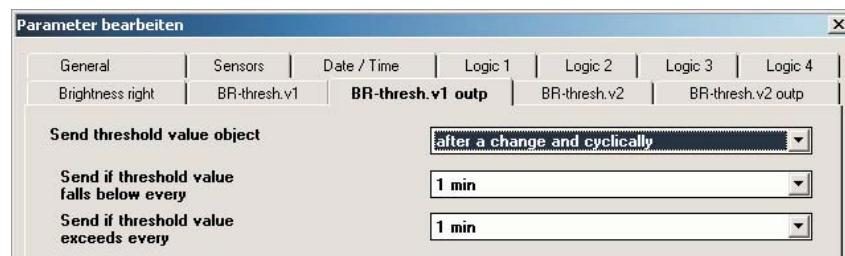


Fig. 57: Planning example 1 settings for the parameter window “Brightness right threshold 1 output”

For point 2:

Settings for the parameter window “Wind speed”, “Threshold value 1” and “Threshold value 1 output”

Fig. 58: Planning example 1 settings for the parameter window “Wind speed”

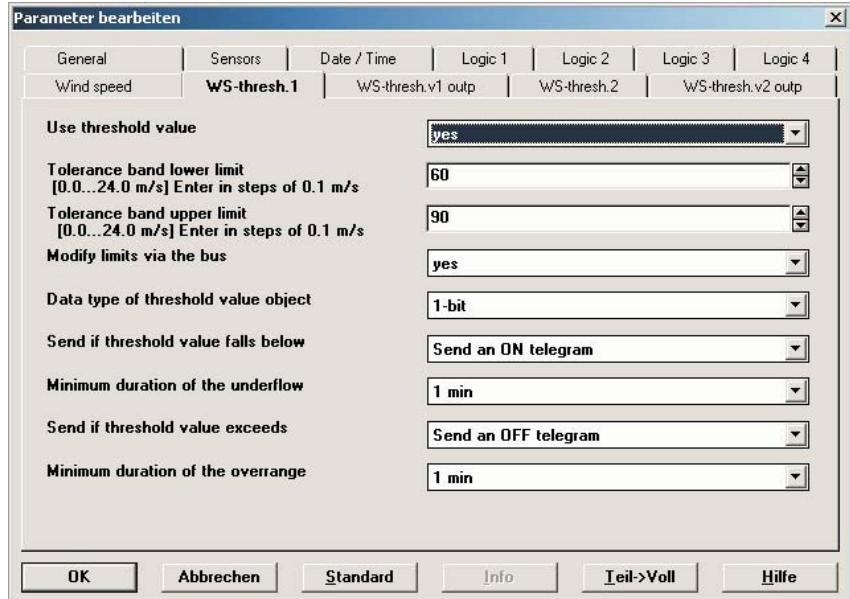


Fig. 59: Planning example 1 settings for the parameter window “Wind speed threshold 1”

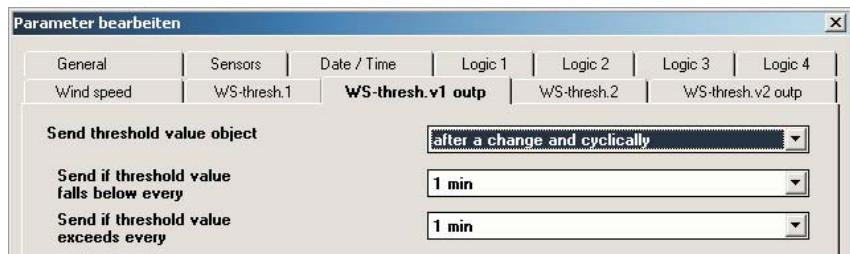


Fig. 60: Planning example 1 settings for the parameter window “Wind speed threshold 1 output”

For point 3:

Settings for the parameter window “Rain”, “Threshold value 1” and “Threshold value 1 output”

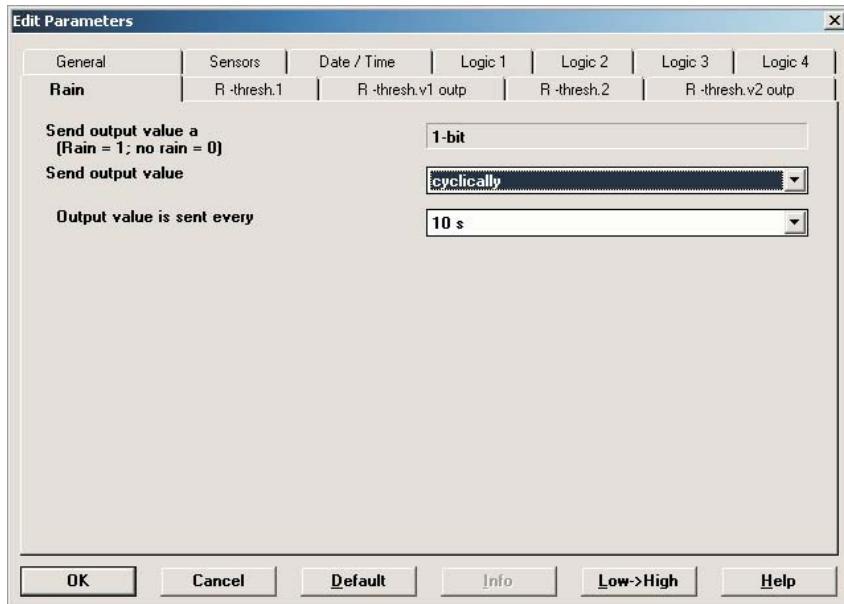


Fig. 61: Planning example 1 settings for the parameter window “Rain”

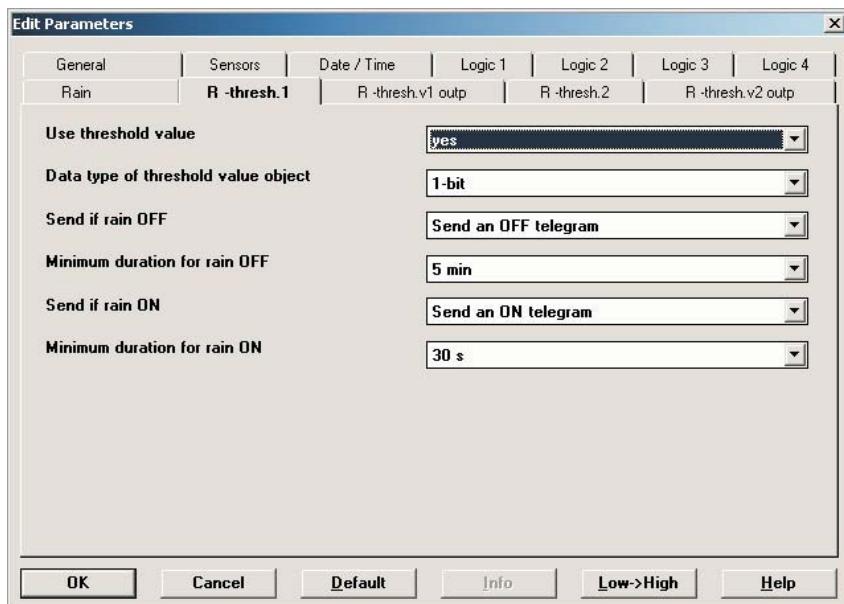


Fig. 62: Planning example 1 settings for the parameter window “Day/Night threshold 1”

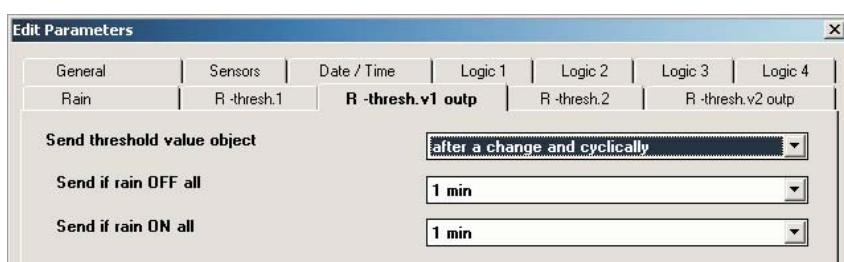


Fig. 63: Planning example 1 settings for the parameter window “Day/Night threshold 1 output”

For point 4:

Settings for the parameter window “Day/Night”, “Threshold value 1” and “Threshold value 1 output”

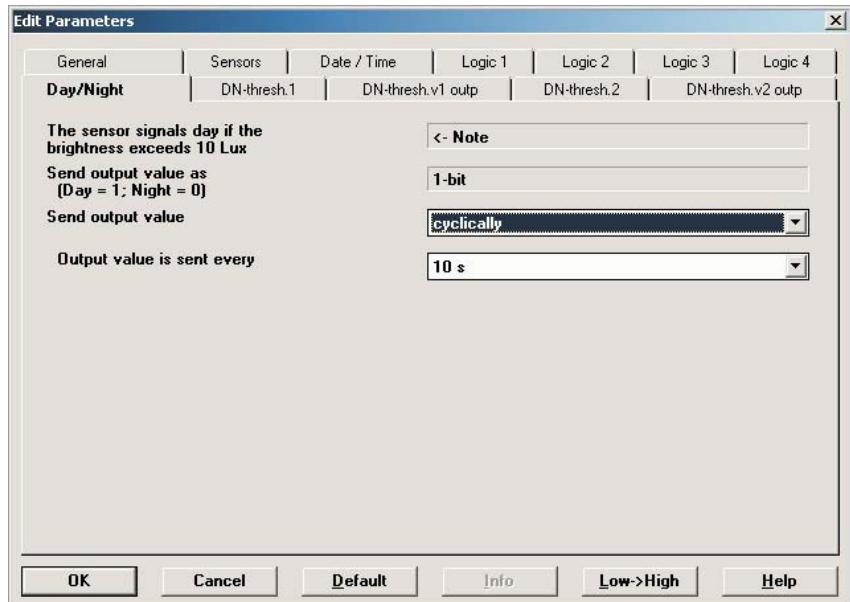


Fig. 64: Planning example 1 settings for the parameter window “Day/Night”

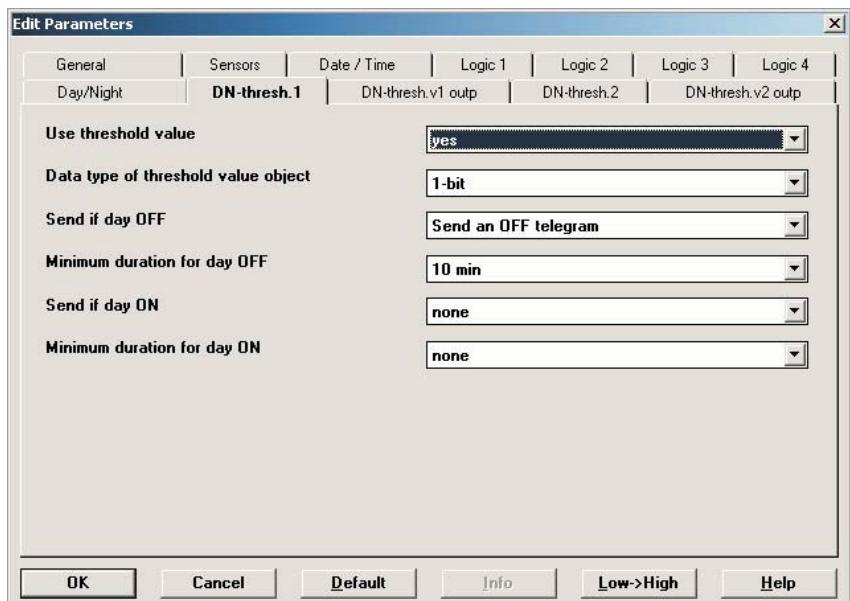


Fig. 65: Planning example 1 settings for the parameter window “Day/Night threshold 1”

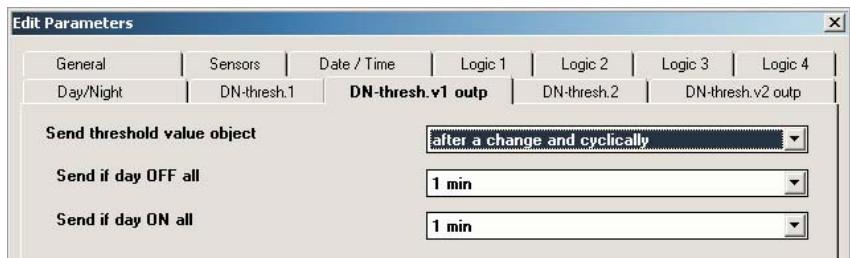


Fig. 66: Planning example 1 settings for the parameter window “Day/Night threshold 1 output”

For point 5:

Settings for the parameter window “Twilight”, “Threshold value 1/2” and “Threshold value 1/2 output”

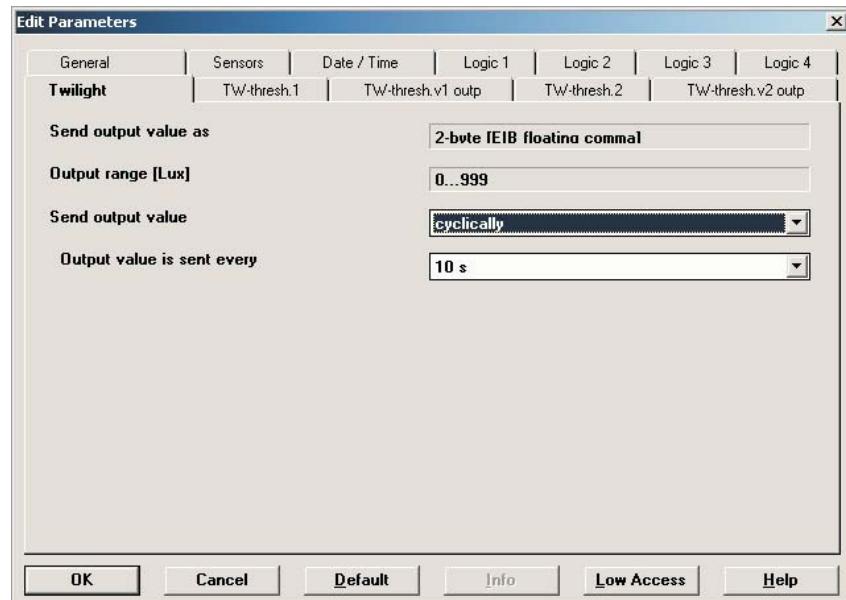


Fig. 67: Planning example 1 settings for the parameter window “Twilight”

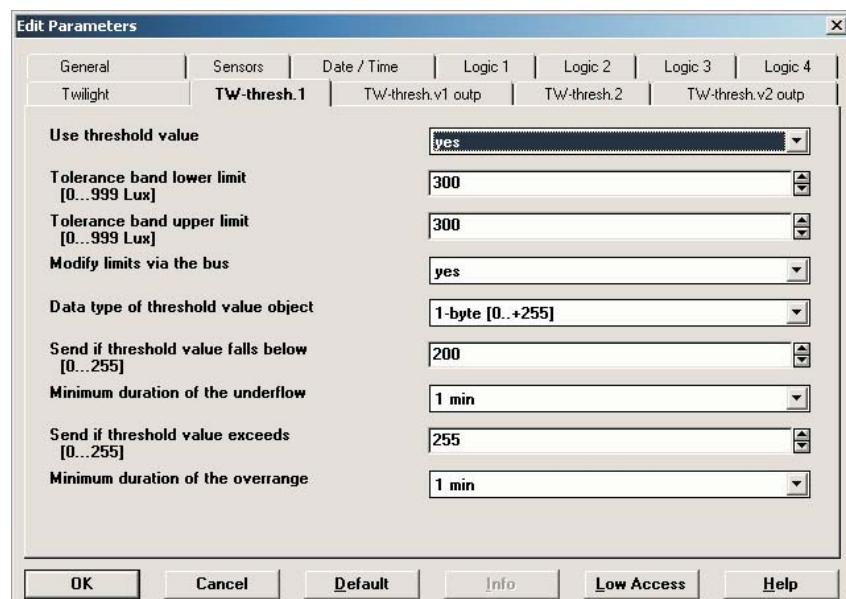


Fig. 68: Planning example 1 settings for the parameter window “Twilight threshold 1”

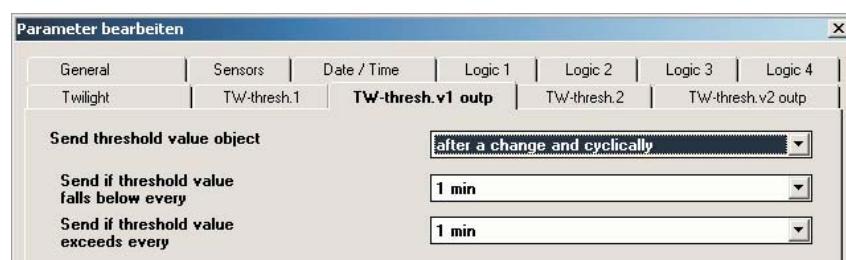


Fig. 69: Planning example 1 settings for the parameter window “Twilight threshold 1 output”

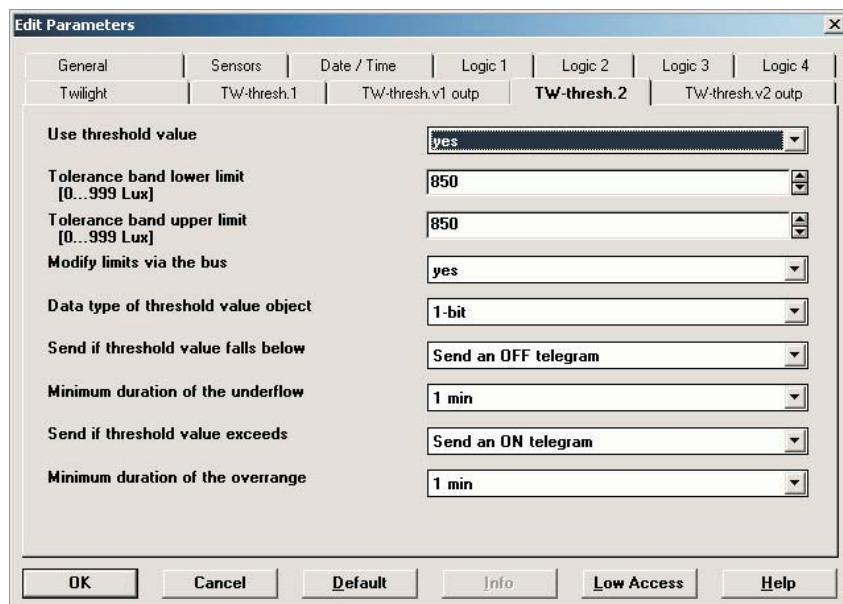


Fig. 70: Planning example 1 settings for the parameter window "Twilight threshold 2"

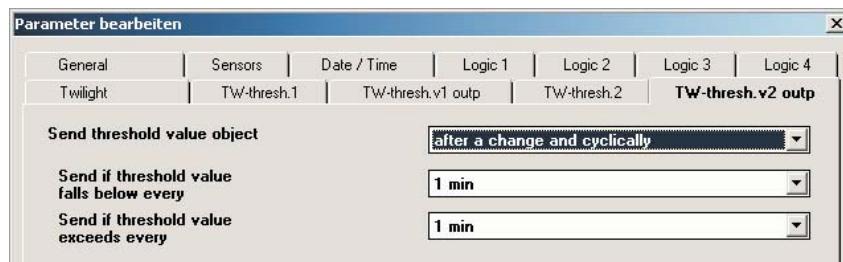


Fig. 71: Planning example 1 settings for the parameter window "Twilight threshold 2 output"

For point 6:

Settings for the parameter window “Temperature threshold value 1/2” and “Threshold value 1/2 output”

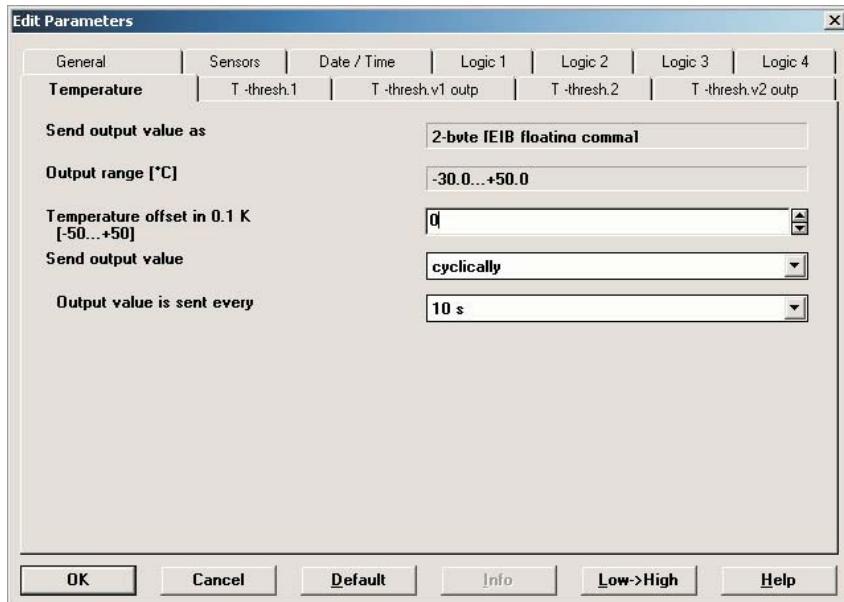


Fig. 72: Planning example 1 settings for the parameter window “Temperature”

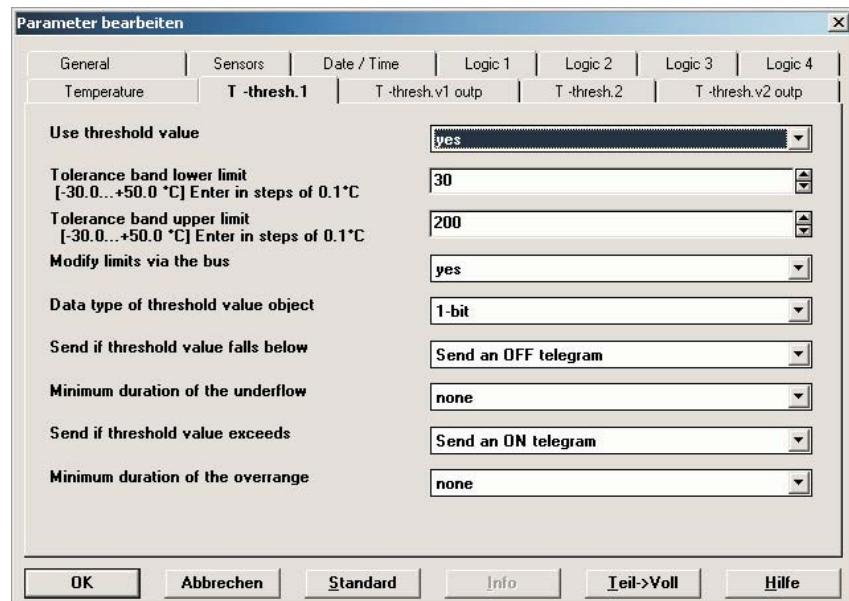


Fig. 73: Planning example 1 settings for the parameter window “Twilight threshold 1”

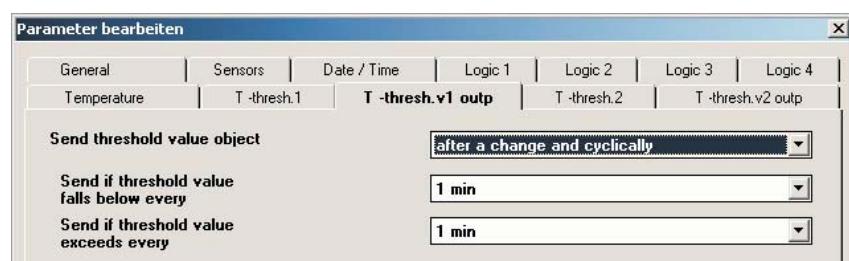


Fig. 74: Planning example 1 settings for the parameter window “Twilight threshold 1 output”

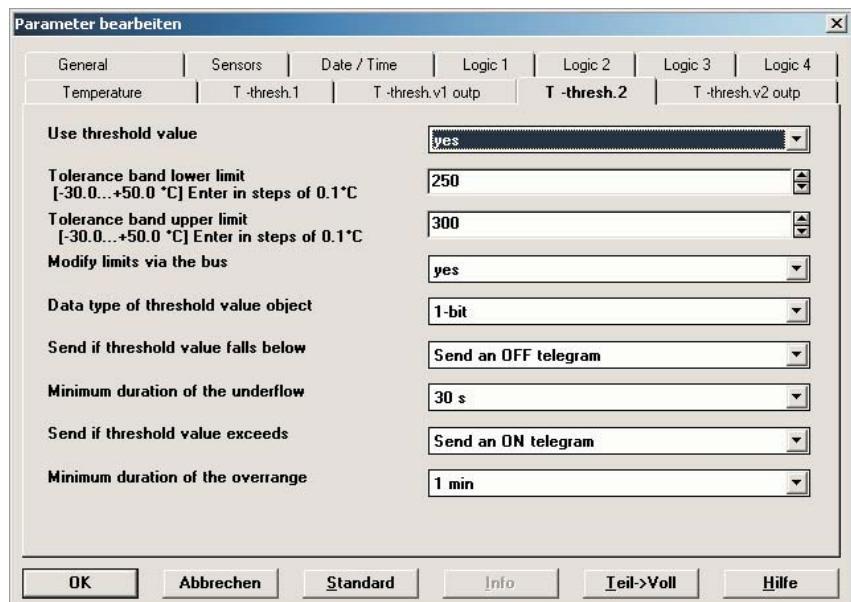


Fig. 75: Planning example 1 settings for the parameter window "Temperature threshold 2"

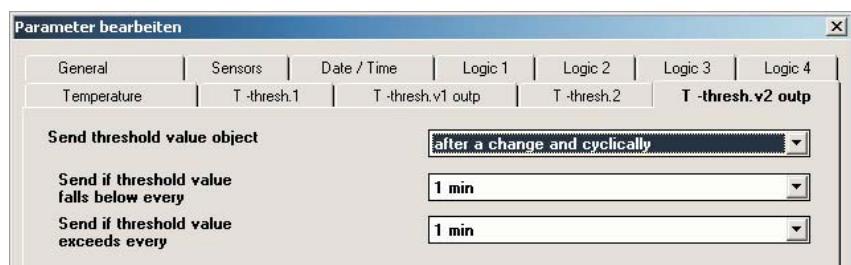


Fig. 76: Planning example 1 settings for the parameter window "Temperature threshold 2 output"

For point 7:

It is considered in each of the points 1 to 6.

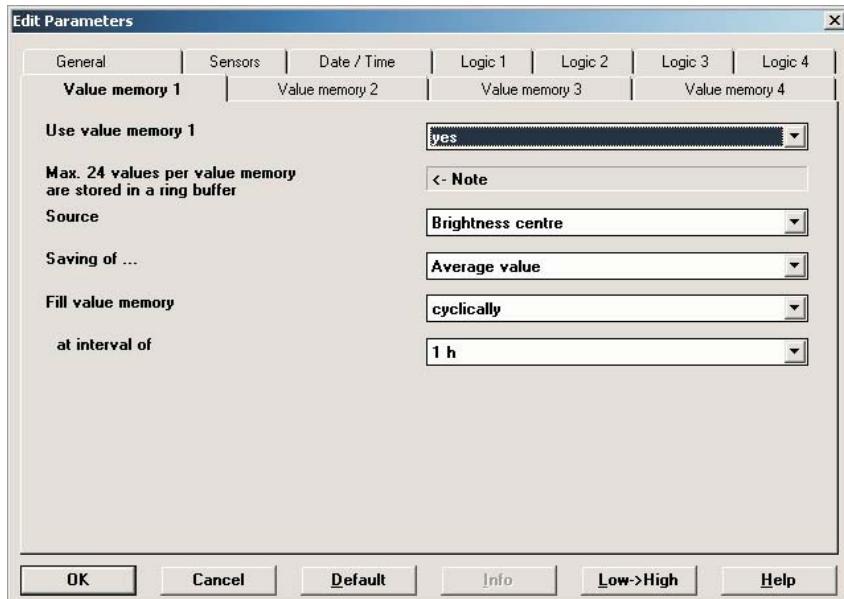
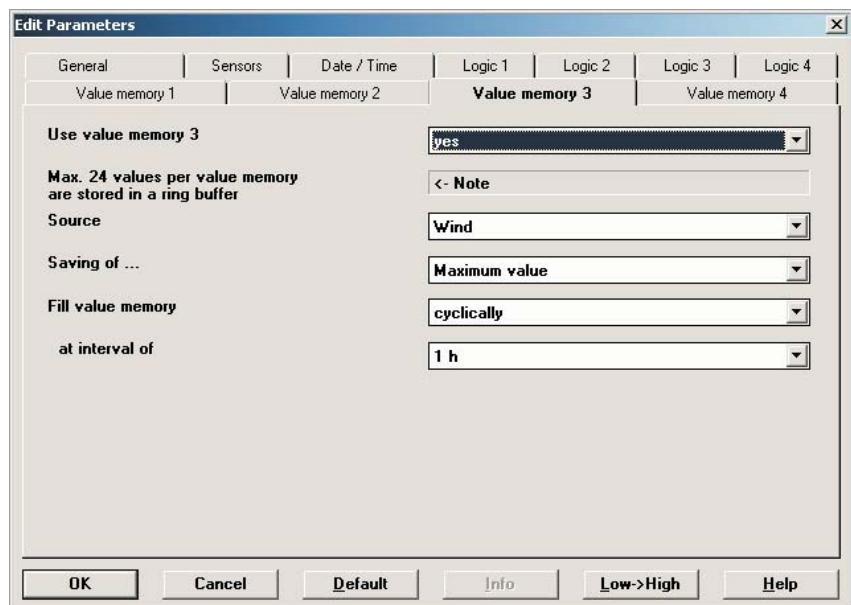
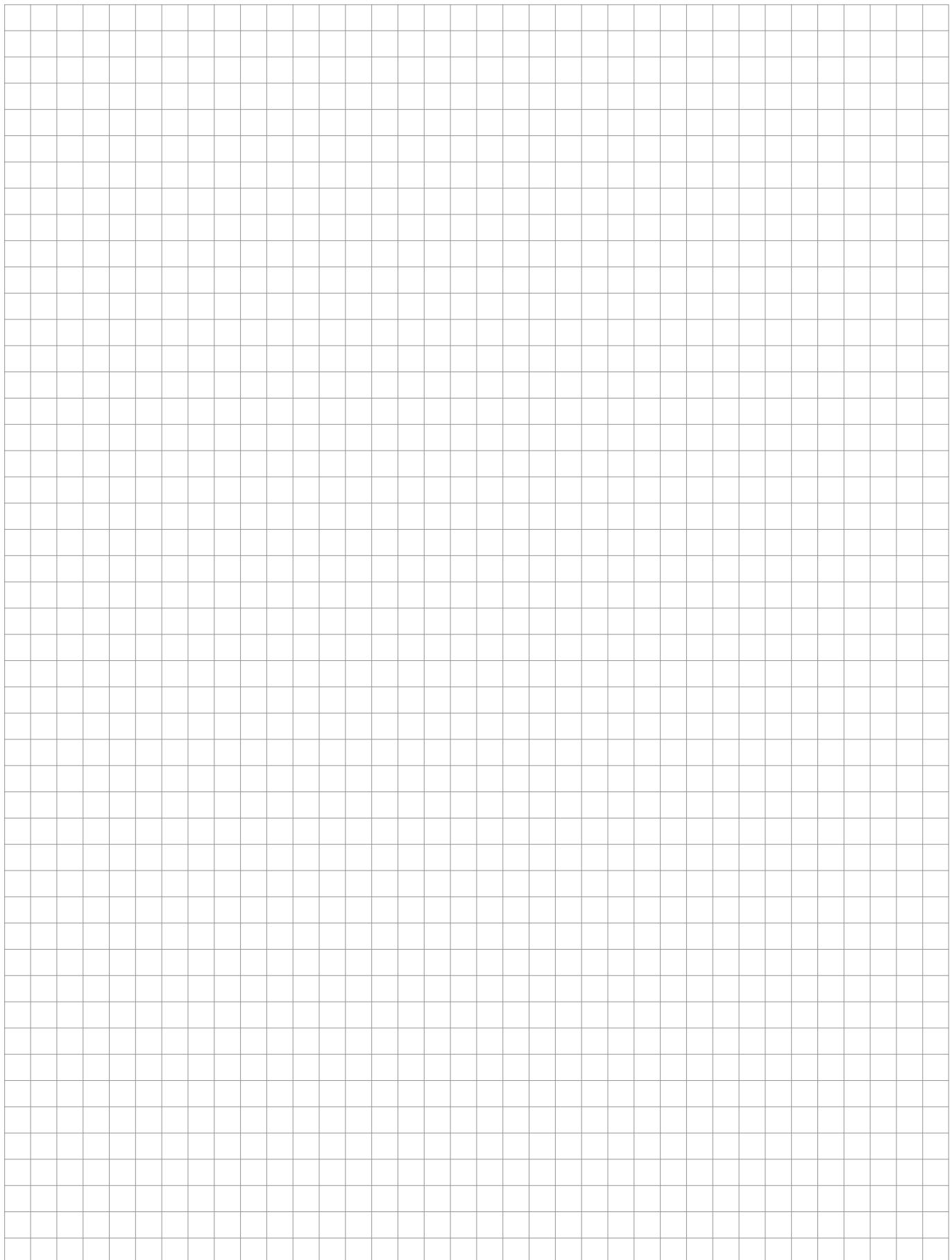

For point 8:**Settings for the parameter window “Value memory 1 and 2”**

Fig. 77: Planning example 1 settings for the parameter window “Value memory threshold 1”

Fig. 78: Planning example 1 settings for the parameter window “Value memory threshold 2”


Settings for the parameter window “Value memory 3 and 4”


Fig. 79: Planning example 1 settings for the parameter window “Value memory threshold 3”

It is possible to individually read the values at the touch of a button via communication object 72.

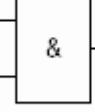
Notes

Appendix

A.1 Scope of delivery Weather Unit

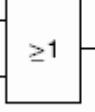
The Weather Unit WZ/S 1.1 is supplied with the following parts.
Please check the items received using the following list.

- 1 pc. WZ/S 1.1, Weather Unit, 1-fold, MDRC
- 1 pc. installation and operating instructions
- 1 pc. Bus Connection Terminal (red/black)


A.2 Scope of delivery Weather Sensor

The Weather Sensor WES/A 1.1 is supplied with the following parts.
Please check the items received using the following list.

- 1 pc. WES/A 1.1, Weather Sensor, AP
- 1 pc. installation and operating instructions
- 1 pc. wall bracket


A.3 Logic truth table

AND

A → & → Q

OR

A → ≥1 → Q

A	B	Q
0	0	0
1	0	0
0	1	0
1	1	1

A	B	Q
0	0	0
1	0	1
0	1	1
1	1	1

Table 22: Truth table

The gates and the tables describe the input and output states for 2 inputs.
For several inputs, the tables must be extended accordingly.

**A.4 Overview
“Wind speeds”**

Representation of various units of wind speed and their values.

Wind speed (Beaufort)	m/s		km/h		Knots (nm/h)		mi/h		ft/min	
	from	to	from	to	from	to	from	to	from	to
0	0	0	0	0	0	0	0	0	0	0
1	0.3	1.5	1	5	1	3	1	4	59	295
2	1.6	3.3	6	11	4	6	4	7	315	650
3	3.4	5.4	12	19	7	10	8	12	669	1063
4	5.5	7.9	20	28	11	15	12	18	1083	1555
5	8	10.7	29	38	16	21	18	25	1575	2106
6	10.8	13.8	39	49	22	27	25	32	2126	2717
7	13.9	17.1	50	61	28	33	32	38	2736	3366
8	17.2	20.7	62	74	34	40	39	47	3386	4075
9	20.8	24.4	75	87	41	47	47	55	4094	4803
10	24.5	28.4	88	102	48	55	55	64	4823	5591
11	28.5	32.6	103	117	56	63	64	73	5610	6417
12	32.7	36.9	118	132	64	72	74	83	6437	7264
13	37	41.4	133	149	73	80	85	93	7283	8150
14	41.5	46.1	149	165	81	90	94	104	8169	9075
15	46.2	50.9	166	183	90	99	104	114	6094	10020
16	51	56	184	201	99	109	114	126	10039	11024
17	56		202		109		126		11024	

Table 23: Wind speeds

**A.5 Value table for communication object
“Status byte – System”**

Bit-No.	7	6	5	4	3	2	1	0
8-bit-value								
0 00	0	0	0	0	0	0	0	0
1 01	0	0	0	0	0	0	0	1
2 02	0	0	0	0	0	0	1	0
3 03	0	0	0	0	0	0	1	1
4 04	0	0	0	0	0	1	0	0
5 05	0	0	0	0	0	1	0	1
6 06	0	0	0	0	0	1	1	0
7 07	0	0	0	0	0	1	1	1
8 08	0	0	0	0	1	0	0	0
9 09	0	0	0	0	1	0	0	1
10 0A	0	0	0	0	1	0	1	0
11 0B	0	0	0	0	1	0	1	1
12 0C	0	0	0	0	1	1	0	0
13 0D	0	0	0	0	1	1	0	1
14 0E	0	0	0	0	1	1	1	0
15 0F	0	0	0	0	1	1	1	1
16 10	0	0	0	1	0	0	0	0
17 11	0	0	0	1	0	0	0	1
18 12	0	0	0	1	0	0	1	0
19 13	0	0	0	1	0	0	1	1
20 14	0	0	0	1	0	1	0	0
21 15	0	0	0	1	0	1	0	1
22 16	0	0	0	1	0	1	1	0
23 17	0	0	0	1	0	1	1	1
24 18	0	0	0	1	1	0	0	0
25 19	0	0	0	1	1	0	0	1
26 1A	0	0	0	1	1	0	1	0
27 1B	0	0	0	1	1	0	1	1
28 1C	0	0	0	1	1	1	0	0
29 1D	0	0	0	1	1	1	0	1
30 1E	0	0	0	1	1	1	1	0
31 1F	0	0	0	1	1	1	1	1
32 20	0	0	1	0	0	0	0	0
33 21	0	0	1	0	0	0	0	1
34 22	0	0	1	0	0	0	1	0
35 23	0	0	1	0	0	0	1	1
36 24	0	0	1	0	0	1	0	0
37 25	0	0	1	0	0	1	0	1
38 26	0	0	1	0	0	1	1	0
39 27	0	0	1	0	0	1	1	1
40 28	0	0	1	0	1	0	0	0
41 29	0	0	1	0	1	0	0	1
42 2A	0	0	1	0	1	0	1	0
43 2B	0	0	1	0	1	0	1	1
44 2C	0	0	1	0	1	1	0	0
45 2D	0	0	1	0	1	1	0	1
46 2E	0	0	1	0	1	1	1	0
47 2F	0	0	1	0	1	1	1	1
48 30	0	0	1	1	0	0	0	0
49 31	0	0	1	1	0	0	0	1
50 32	0	0	1	1	0	0	1	0
51 33	0	0	1	1	0	0	1	1
52 34	0	0	1	1	0	1	0	0
53 35	0	0	1	1	0	1	0	1
54 36	0	0	1	1	0	1	1	0
55 37	0	0	1	1	0	1	1	1
56 38	0	0	1	1	1	0	0	0
57 39	0	0	1	1	1	0	0	1
58 3A	0	0	1	1	1	0	1	0
59 3B	0	0	1	1	1	0	1	1
60 3C	0	0	1	1	1	1	0	0
61 3D	0	0	1	1	1	1	0	1
62 3E	0	0	1	1	1	1	1	0
63 3F	0	0	1	1	1	1	1	1
64 40	0	1	0	0	0	0	0	0
65 41	0	1	0	0	0	0	0	1
66 42	0	1	0	0	0	0	1	0
67 43	0	1	0	0	0	0	1	1
68 44	0	1	0	0	0	1	0	0
69 45	0	1	0	0	0	1	0	1
70 46	0	1	0	0	0	1	1	0
71 47	0	1	0	0	0	1	1	1
72 48	0	1	0	0	1	0	0	0
73 49	0	1	0	0	1	0	0	1
74 4A	0	1	0	0	1	0	1	0
75 4B	0	1	0	0	1	0	1	1
76 4C	0	1	0	0	1	1	0	0
77 4D	0	1	0	0	1	1	0	1
78 4E	0	1	0	0	1	1	1	0
79 4F	0	1	0	0	1	1	1	1
80 50	0	1	0	1	0	0	0	0
81 51	0	1	0	1	0	0	0	1
82 52	0	1	0	1	0	0	1	0
83 53	0	1	0	1	0	0	1	1
84 54	0	1	0	1	0	1	0	0
85 55	0	1	0	1	0	1	0	1

Bit-No.	7	6	5	4	3	2	1	0
8-bit-value								
86 56	0	1	0	1	0	1	1	0
87 57	0	1	0	1	0	1	1	1
88 58	0	1	0	1	0	1	0	0
89 59	0	1	0	1	0	1	0	1
90 5A	0	1	0	1	1	0	1	0
91 5B	0	1	0	1	1	0	1	1
92 5C	0	1	0	1	1	1	0	0
93 5D	0	1	0	1	1	1	0	1
94 5E	0	1	0	1	1	1	1	0
95 5F	0	1	0	1	1	1	1	1
96 60	0	1	1	0	0	0	0	0
97 61	0	1	1	0	0	0	0	1
98 62	0	1	1	0	0	0	1	0
99 63	0	1	1	0	0	0	1	1
100 64	0	1	1	0	0	1	0	0
101 65	0	1	1	0	0	1	0	1
102 66	0	1	1	0	0	1	1	0
103 67	0	1	1	0	0	1	1	1
104 68	0	1	1	0	1	0	0	0
105 69	0	1	1	0	1	0	0	1
106 6A	0	1	1	0	1	0	1	0
107 6B	0	1	1	0	1	0	1	1
108 6C	0	1	1	0	1	1	0	0
109 6D	0	1	1	0	1	1	0	1
110 6E	0	1	1	0	1	1	1	0
111 6F	0	1	1	0	1	1	1	1
112 70	0	1	1	1	0	0	0	0
113 71	0	1	1	1	0	0	0	1
114 72	0	1	1	1	0	0	1	0
115 73	0	1	1	1	0	0	1	1
116 74	0	1	1	1	0	1	0	0
117 75	0	1	1	1	0	1	0	1
118 76	0	1	1	1	0	1	1	0
119 77	0	1	1	1	0	1	1	1
120 78	0	1	1	1	1	0	0	0
121 79	0	1	1	1	1	0	0	1
122 7A	0	1	1	1	1	1	0	1
123 7B	0	1	1	1	1	1	0	1
124 7C	0	1	1	1	1	1	1	0
125 7D	0	1	1	1	1	1	0	1
126 7E	0	1	1	1	1	1	1	0
127 7F	0	1	1	1	1	1	1	1
128 80	1	0	0	0	0	0	0	0
129 81	1	0	0	0	0	0	0	1
130 82	1	0	0	0	0	0	1	0
131 83	1	0	0	0	0	0	1	1
132 84	1	0	0	0	0	0	1	0
133 85	1	0	0	0	0	0	1	1
134 86	1	0	0	0	0	0	1	1
135 87	1	0	0	0	0	0	1	1
136 88	1	0	0	0	0	1	0	0
137 89	1	0	0	0	0	1	0	0
138 8A	1	0	0	0	0	1	0	1
139 8B	1	0	0	0	0	1	0	1
140 8C	1	0	0	0	0	1	1	0
141 8D	1	0	0	0	0	1	1	1
142 8E	1	0	0	0	0	1	1	0
143 8F	1	0	0	0	0	1	1	1
144 90	1	0	0	0	0	1	1	0
145 91	1	0	0	0	0	1	0	0
146 92	1	0	0	0	0	1	0	1
147 93	1	0	0	0	0	1	0	1
148 94	1	0	0	0	0	1	0	0
149 95	1	0	0	0	0	1	0	1
150 96	1	0	0	0	1	0	1	0
151 97	1	0	0	0	1	0	1	1
152 98	1	0	0	0	1	1	0	0
153 99	1	0	0	0	1	1	0	1
154 9A	1	0	0	0	1	1	0	1
155 9B	1	0	0	0	1	1	0	1
156 9C	1	0	0	0	1	1	0	0
157 9D	1	0	0	0	1	1	0	1
158 9E	1	0	0	0	1	1	1	0
159 9F	1	0	0	0	1	1	1	1
160 A0	1	0	0	1	0	0	0	0
161 A1	1	0	0	1	0	0	0	1
162 A2	1	0	0	1	0	0	1	0
163 A3	1	0	0	1				

A.6 Directory of drawings

Fig. 1:	WZ/S 1.1	4
Fig. 2:	Circuit diagram "Weather Unit"	5
Fig. 3:	Dimension drawing "Weather Unit"	5
Fig. 4:	WES/A 1.1	6
Fig. 5:	Circuit diagram "Weather Sensor"	7
Fig. 6:	Dimension drawing "Weather Sensor"	7
Fig. 7:	Exploded drawing "Weather Sensor"	8
Fig. 8:	Arrangement and designation of the sensors	8
Fig. 9:	Alignment of the Weather Sensor	11
Fig. 10:	Alignment of the Weather Sensor on the building	12
Fig. 11:	Parameter window "General"	14
Fig. 12:	Parameter window "Sensors"	17
Fig. 13:	Parameter window "Date / Time"	18
Fig. 14:	Parameter "Master (synchronising via sensor)"	19
Fig. 15:	Parameter "Internal (synchronising via sensor)"	21
Fig. 16:	Parameter "Slave (synchronising via bus)"	22
Fig. 17:	Parameter window "Logic 1"	23
Fig. 18:	Parameter window "Brightness right"	25
Fig. 19:	Parameter window "Brightness right threshold 1"	27
Fig. 20:	Parameter window "Brightness right threshold 1 output"	30
Fig. 21:	Parameter window "Twilight"	31
Fig. 22:	Parameter window "Twilight threshold value 1"	32
Fig. 23:	Parameter window "Day/Night"	33
Fig. 24:	Parameter window "Temperature"	34
Fig. 25:	Parameter window "Temperature threshold value 1"	35
Fig. 26:	Parameter window "Rain"	36
Fig. 27:	Parameter window "Rain threshold value 1"	38
Fig. 28:	Parameter window "Rain threshold value 1 output"	40
Fig. 29:	Parameter window "Wind speed"	41
Fig. 30:	Parameter window "Wind speed threshold value 1"	42
Fig. 31:	Parameter window "Value memory 1"	43
Fig. 32:	Communication objects "Read value memory"	46
Fig. 33:	Communication objects "Brightness right"	47
Fig. 34:	Communication objects "Brightness centre"	49
Fig. 35:	Communication objects "Brightness left"	49
Fig. 36:	Communication objects "Twilight"	49
Fig. 37:	Communication objects "Day/Night"	50
Fig. 38:	Communication objects "Temperature"	51
Fig. 39:	Communication objects "Rain"	52
Fig. 40:	Communication objects "Wind speed"	53
Fig. 41:	Communication objects "Logic"	54
Fig. 42:	Communication objects "Value memory"	55
Fig. 43:	Communication objects "Date/Time (master)"	57
Fig. 44:	Communication objects "Date/Time (slave)"	57
Fig. 45:	Communication objects "General"	58
Fig. 46:	Threshold value function	61
Fig. 47:	Planning example 1 settings for the parameter window "Sensor"	63
Fig. 48:	Planning example 1 settings for the parameter window "General"	63
Fig. 49:	Planning example 1 settings for the parameter window "Brightness left"	64
Fig. 50:	Planning example 1 settings for the parameter window "Brightness left threshold 1"	64
Fig. 51:	Planning example 1 settings for the parameter window "Brightness left threshold 1 output"	64
Fig. 52:	Planning example 1 settings for the parameter window "Brightness centre"	65
Fig. 53:	Planning example 1 settings for the parameter window "Brightness centre threshold 1"	65
Fig. 54:	Planning example 1 settings for the parameter window "Brightness centre threshold 1 output"	65
Fig. 55:	Planning example 1 settings for the parameter window "Brightness right"	66
Fig. 56:	Planning example 1 settings for the parameter window "Brightness right threshold 1"	66
Fig. 57:	Planning example 1 settings for the parameter window "Brightness right threshold 1 output"	66
Fig. 58:	Planning example 1 settings for the parameter window "Wind speed"	67

Fig. 59:	Planning example 1 settings for the parameter window “Wind speed threshold 1”	67
Fig. 60:	Planning example 1 settings for the parameter window “Wind speed threshold 1 output”	67
Fig. 61:	Planning example 1 settings for the parameter window “Rain”	68
Fig. 62:	Planning example 1 settings for the parameter window “Brightness R. 1”	68
Fig. 63:	Planning example 1 settings for the parameter window “Brightness R. 1 output”	68
Fig. 64:	Planning example 1 settings for the parameter window “Day/Night”	69
Fig. 65:	Planning example 1 settings for the parameter window “Day/Night threshold 1”	69
Fig. 66:	Planning example 1 settings for the parameter window “Day/Night threshold value 1 output”	69
Fig. 67:	Planning example 1 settings for the parameter window “Twilight”	70
Fig. 68:	Planning example 1 settings for the parameter window “Twilight threshold 1”	70
Fig. 69:	Planning example 1 settings for the parameter window “Twilight threshold value 1 output”	70
Fig. 70:	Planning example 1 settings for the parameter window “Twilight threshold value 2”	71
Fig. 71:	Planning example 1 settings for the parameter window “Twilight threshold value 2 output”	71
Fig. 72:	Planning example 1 settings for the parameter window “Temperature”	72
Fig. 73:	Planning example 1 settings for the parameter window “Temperature threshold 1”	72
Fig. 74:	Planning example 1 settings for the parameter window “Temperature threshold value 1 output”	72
Fig. 75:	Planning example 1 settings for the parameter window “Temperature threshold value 2”	73
Fig. 76:	Planning example 1 settings for the parameter window “Temperature threshold value 2 output”	73
Fig. 77:	Planning example 1 settings for the parameter window “Value memory 1”	74
Fig. 78:	Planning example 1 settings for the parameter window “Value memory 2”	74
Fig. 79:	Planning example 1 settings for the parameter window “Value memory 3”	75

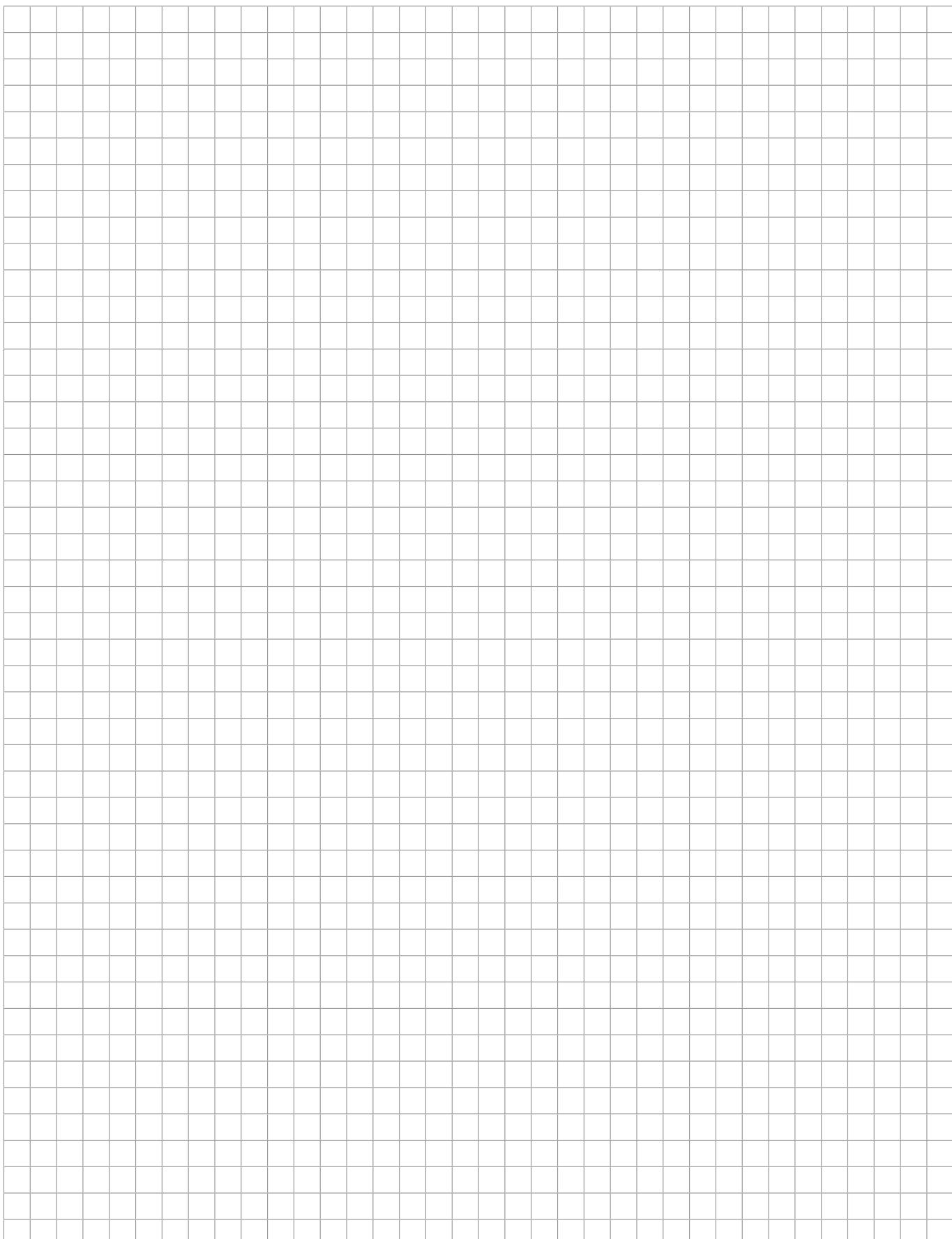
A.7	Directory of tables	
Table 1:	Technical data “Weather Unit”	4
Table 2:	Application program	5
Table 3:	Technical data “Weather Sensor”	6
Table 4:	Functions of the application program.	13
Table 5:	Communication objects 0 to 4 “Brightness right”	47
Table 6:	Communication objects 5 to 7 “Brightness right”	48
Table 7:	Communication objects 8 to 15 “Brightness centre”	49
Table 8:	Communication objects 16 to 23 “Brightness left”	49
Table 9:	Communication objects 24 to 31 “Twilight”	49
Table 10:	Communication objects 32 to 39 “Day/Night”	50
Table 11:	Communication objects 40 to 47 “Temperature”	51
Table 12:	Communication objects 48 to 55 “Rain”	52
Table 13:	Communication objects 56 to 60 “Wind speed”	53
Table 14:	Communication objects 61 to 63 “Wind speed”	54
Table 15:	Communication objects 64 to 69 “Logic”	54
Table 16:	Communication objects 70 to 74 “Value memory”	55
Table 17:	Communication objects 75 to 78 “Value memory”	56
Table 18:	Communication objects 79 to 81 “Date/Time (master)”	57
Table 19:	Communication objects 79 to 81 “Date/Time (slave)”	57
Table 20:	Communication objects 82 and 83 “General”	58
Table 21:	Communication objects 84 and 85 “General”	59
Table 22:	Truth table	I
Table 23:	Wind speeds	II
Table 24:	Ordering details for the Weather Unit WZ/S 1.1, MDRC	VIII
Table 25:	Ordering details for the Weather Sensor WES/A 1.1, AP	VIII

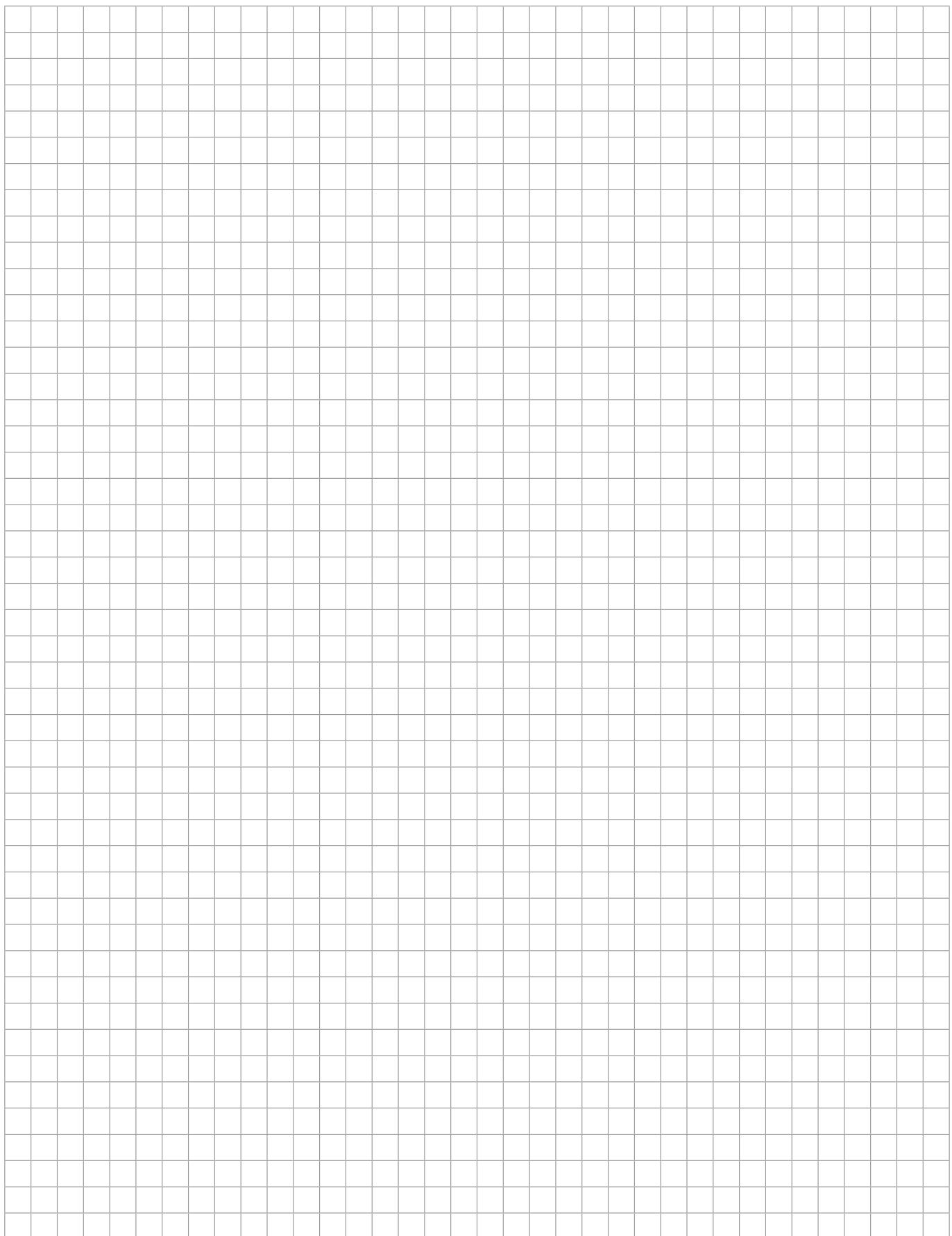
A.8 Index

Assignment of the physical address	3, 4, 9
Output value	25, 31, 34, 41
Supplied state	9
Bus voltage	4, 9
Bus voltage recovery	14
Inputs	3, 13, 24, 54, 1
Commissioning requirements	9
Maximum value	45
Measured value	3, 45
Minimum value	45
Average value	45
Mains voltage	3, 4, 9
Mains voltage recovery	14, 20
Programming	3, 9, 13, 14, 20, 22, 57
Cleaning	9
Ring buffer	3, 13, 44
Temperature offset	34
Power supply	3, 4, 6
Maintenance	12

A.9 Ordering details
Weather Unit WZ/S 1.1

Type	Description	Order Code	bbn 40 16779 EAN	Price group	Weight 1 pc. [kg]	Pack unit [Pcs]
WZ/S 1.1	Weather Unit, 1 fold, MDRC	2CDG 110 034 R0011	58612 2	26	0.2	1


Table 24: Ordering details for the Weather Unit WZ/S 1.1, MDRC


A.10 Ordering details
Weather Sensor WES/A 1.1

Type	Description	Order Code	bbn 40 16779 EAN	Price group	Weight 1 pc. [kg]	Pack unit [Pcs]
WES/A 1.1	Weather Sensor, AP	2CDG 120 003 R0011	58611 5	20	0.2	1

Table 25: Ordering details for the Weather Sensor WES/A 1.1, AP

A.11 Notes

The technical details in this publication are subject to change without notice.

Pub. No. 2CDC 504 052 D0205
replace 2CDC 504 052 D0204

Your KNX-Partner

www.abb.com/knx