

IN700-485 Series
INTESSIS PROTOCOL TRANSLATOR WITH SERIAL AND IP SUPPORT

USER MANUAL

Version 1.0

Publication date 2022-10-27

Copyright © 2022 Intesis

Disclaimer

The information in this document is for informational purposes only. Please inform HMS Networks of any inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for any errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product development. The information in this document shall therefore not be construed as a commitment on the part of HMS Networks and is subject to change without notice. HMS Networks makes no commitment to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only intended to help improve understanding of the functionality and handling of the product. In view of the wide range of possible applications of the product, and because of the many variables and requirements associated with any particular implementation, HMS Networks cannot assume responsibility or liability for actual use based on the data, examples or illustrations included in this document nor for any damages incurred during installation of the product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product is used correctly in their specific application and that the application meets all performance and safety requirements including any applicable laws, regulations, codes and standards. Further, HMS Networks will under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of undocumented features or functional side effects found outside the documented scope of the product. The effects caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability issues.

Table of Contents

1. Order Codes	1
2. General Information	2
2.1. Intended Use of the User Manual	2
2.2. General Safety Information	2
2.3. Admonition Messages and Symbols	2
2.4. Terminology	3
3. General Introduction	4
4. BACnet Server to Modbus Client	5
4.1. Specific Gateway Introduction	5
4.2. Functionality	5
5. Modbus Server to BACnet Client	6
5.1. Specific Gateway Introduction	6
5.2. Functionality	6
6. ASCII Server to BACnet Client	7
6.1. Specific Gateway Introduction	7
6.2. Functionality	7
7. Gateway Capacity	8
8. BACnet Interface	9
8.1. General Description	9
8.2. BACnet Client	9
8.3. Description	9
8.4. Points Definition	11
8.5. BACnet Server	11
8.6. Description	11
8.7. BACnet IP	12
8.8. BACnet MSTP	13
9. Modbus Interface	14
9.1. General Description	14
9.2. Modbus Server Interface	14
9.3. Description	14
9.4. Functions Supported	14
9.5. Modbus RTU	15
9.6. Modbus TCP	15
9.7. Modbus Server Interface Points Definition	16
9.8. Modbus Client Interface	16
9.9. Description	16
9.10. Points Definition	17
10. ASCII Interface	18
10.1. Description	18
10.2. ASCII Serial	18
10.3. ASCII TCP	18
10.4. Address Map	18
10.5. Points Definition	19
10.6. Messages	19

11. Connections	21
11.1. Power Supply	21
11.2. Connection Diagrams for each Application	22
11.3. Connection to Modbus	25
11.4. Connection to BACnet	26
11.5. Connection to ASCII	27
11.6. Console and USB Connections	28
12. Set-up Process with the Configuration Tool	29
12.1. Prerequisites	29
12.2. Intesis MAPS: Configuration and Monitoring Tool	29
12.2.1. Introduction	29
12.2.2. Template Selection	30
12.2.3. Connection Tab	30
12.2.4. Configuration Tab	31
12.2.5. Signals Tab	31
12.2.6. Receive/Send Tab	31
12.2.7. Diagnostic	32
13. Technical Specifications	33
14. Dimensions	34

1. Order Codes

ORDER CODE	LEGACY ORDER CODE		
IN7004851000000	INMBSBAC1000000	INBACMBM1000000	-
IN7004852500000	INMBSBAC2500000	INBACMBM2500000	-
IN7004856000000	INMBSBAC6000000	INBACMBM6000000	INASCBAC6000000
IN7004851K20000	INMBSBAC1K20000	INBACMBM1K20000	-
IN7004853K00000	INMBSBAC3K00000	INBACMBM3K00000	INASCBAC3K00000

PRODUCT NAME	ORDER CODE	DESCRIPTION	INTESIS MAPS TEMPLATE	APPLICATION
IN700-485	IN700485xxx*0000	Intesis Protocol Translator with Serial and IP Support	IN-BAC-MBM	Modbus client to BACnet server
			IN-MBS-BAC	BACnet client to Modbus server
			IN-ASCII-BAC	BACnet client to ASCII server

*xxx defines the Intesis gateway capacity.

2. General Information

2.1. Intended Use of the User Manual

This manual contains the main features of the Intesis gateway and the instructions for its appropriate installation, configuration, and operation.

The contents of the manual should be brought to the attention of any person who installs, configures, or operates the gateway or associated equipment.

Keep this manual for future reference during the installation, configuration, and operation.

2.2. General Safety Information

IMPORTANT

Follow these instructions carefully. Improper work may lead to serious harm to your health and also may seriously damage the gateway and/or any other equipment connected to it.

Only technical personnel, following these instructions and the country legislation for the installation of electric equipment, is allowed to install and manipulate this gateway.

Install this gateway indoors, in a restricted access location, avoiding exposure to direct solar radiation, water, high relative humidity, or dust.

All wires (for power supply, if needed, and communication) must only be connected to networks with indoor wiring. All communication ports are considered for indoor use and must only be connected to SELV circuits.

Disconnect power wires before manipulating and connecting them to the gateway.

Use SELV-rated NEC class 2 or limited power source (LPS) power supply.

Supply always a correct voltage to power the gateway (see [Technical Specifications \(page 33\)](#)).

Respect the expected polarity of power and communication cables when connecting them to the gateway.

CAUTION

Only an authorized installer is allowed to replace the battery. There's a risk of explosion if the battery is replaced by an incorrect type. Dispose of used batteries according to local legislation.

Safety instructions in other languages can be found at <https://intesis.com/docs/manuals/v6-safety>

2.3. Admonition Messages and Symbols

DANGER

Instructions that must be followed to avoid an imminently hazardous situation that, if not avoided, will result in death or severe injury.

WARNING

Instructions that must be followed to avoid a potentially hazardous situation that, if not avoided, could result in death or severe injury.

CAUTION

Instruction that must be followed to avoid a potentially hazardous situation that, if not avoided, could result in minor or moderate injury.

IMPORTANT

Instruction that must be followed to avoid a risk of reduced functionality and/or damage to the equipment or to avoid a network security risk.

NOTE

Additional information which may facilitate installation and/or operation.

TIP

Helpful advice and suggestions.

NOTICE

Remarkable Information.

2.4. Terminology

Some terms generalize specific nomenclature to clarify some explanations.

Term	Description
Intesis gateway Gateway	General term for this device
Application	Specific configuration that allows the gateway to emulate a particular protocol translator
Device or installation	What you're about to integrate
Control system	System that controls the mechanical and electrical equipment of a building, for example, a Building Management System (BMS).
Configuration tool	Software used to configure the gateway

3. General Introduction

This Intesis® gateway allows you to integrate Serial and IP protocols easily.

This document describes the available applications for this gateway:

- Modbus® TCP & RTU Client to BACnet®/IP & MSTP Server
- BACnet/IP & MSTP Client to Modbus TCP & RTU Server
- BACnet/IP & MSTP Client to ASCII IP & Serial Server

IMPORTANT

This document assumes that the user is familiar with BACnet, Modbus, and ASCII technologies and their technical terms.

NOTE

Some sections provide general information common to all applications, while others highlight specific differences, capacities, or limitations.

In general terms, you must have a BACnet, Modbus, or ASCII control and monitoring system on one side and a Modbus or BACnet installation or device on the other side (only one at a time).

IMPORTANT

The Intesis gateway can act as a server or client for BACnet and Modbus but only as a server for ASCII.

As always, the configuration process is fast and easy:

1. Launch the configuration tool.
2. Select the template.
3. Connect the Intesis gateway to the PC.
4. Adjust the configuration and signals to your project.
5. Send the configuration to the gateway.

And you are ready to go!

4. BACnet Server to Modbus Client

4.1. Specific Gateway Introduction

This section describes the integration of Modbus RTU and/or Modbus TCP installations into BACnet IP or MSTP control and monitoring systems using the **BACnet Server to Modbus Client** application.

This integration allows a Modbus control system to access the signals and resources of BACnet systems as if they were part of the Modbus system itself and vice versa.

The gateway configuration is carried out through the configuration tool.

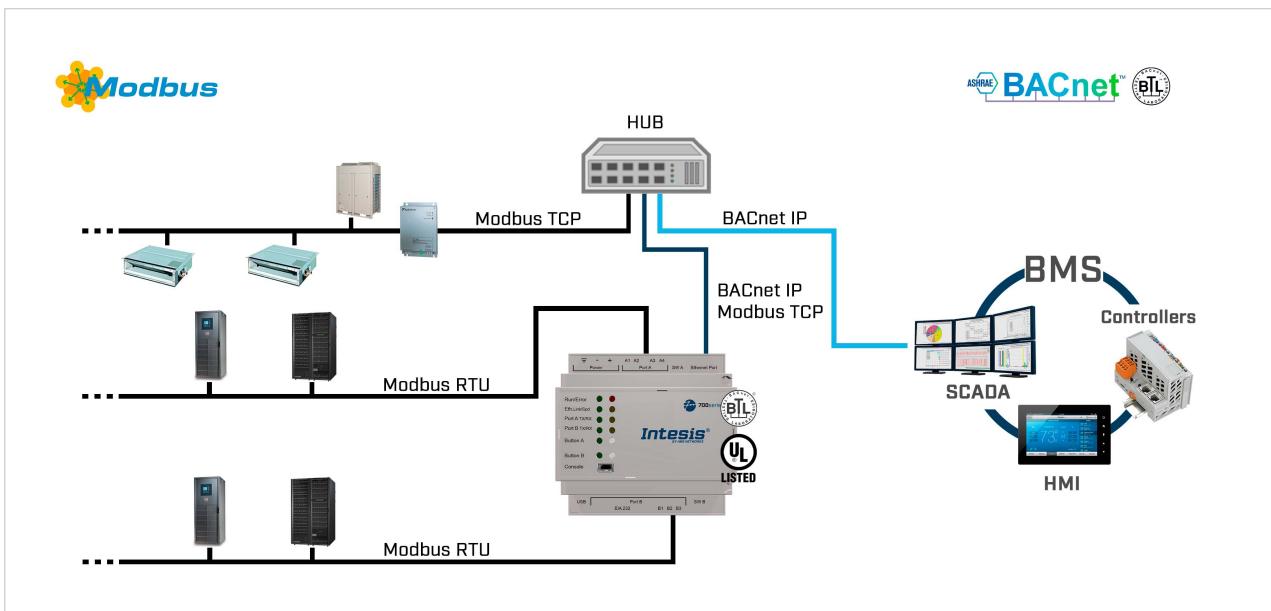


Figure 1. Integration of Modbus RTU or TCP devices into BACnet IP or MSTP control and monitoring systems

4.2. Functionality

From the Modbus point of view, the gateway continuously polls the installation or devices, storing in its memory the values of the points that you previously configured to be read. On the other hand, from the BACnet point of view, the control and monitoring system reads and writes those stored points.

This is possible because, inside the gateway, all Modbus registers of the server devices are associated with BACnet objects. This makes the BACnet control and monitoring system perceive the Modbus installation (all the server devices) as if it were a single BACnet device.

When the gateway polls the Modbus devices, if a non-response is detected, the corresponding virtual signal inside the gateway will be activated, indicating the communication error to the BACnet system.

The gateway has two EIA-485 ports for Modbus RTU integration: Port A and Port B. This function allows you to integrate up to 64 devices (32 in each port) with no additional repeaters in the network.

This functionality is disabled when BACnet MSTP is selected in Intesis MAPS, leaving only Port A available for Modbus RTU connectivity and Port B for BACnet MSTP devices.

By default, Port A is configured for Modbus RTU and Port B for BACnet MSTP.

5. Modbus Server to BACnet Client

5.1. Specific Gateway Introduction

This section describes the integration of BACnet MSTP and BACnet IP devices or installations into Modbus RTU or TCP systems using the **Modbus server to BACnet client** application of the Intesis gateway.

This integration allows a Modbus system to access the signals and resources of BACnet devices as if they were part of the Modbus system itself and vice versa.

The gateway configuration is carried out through the configuration tool.

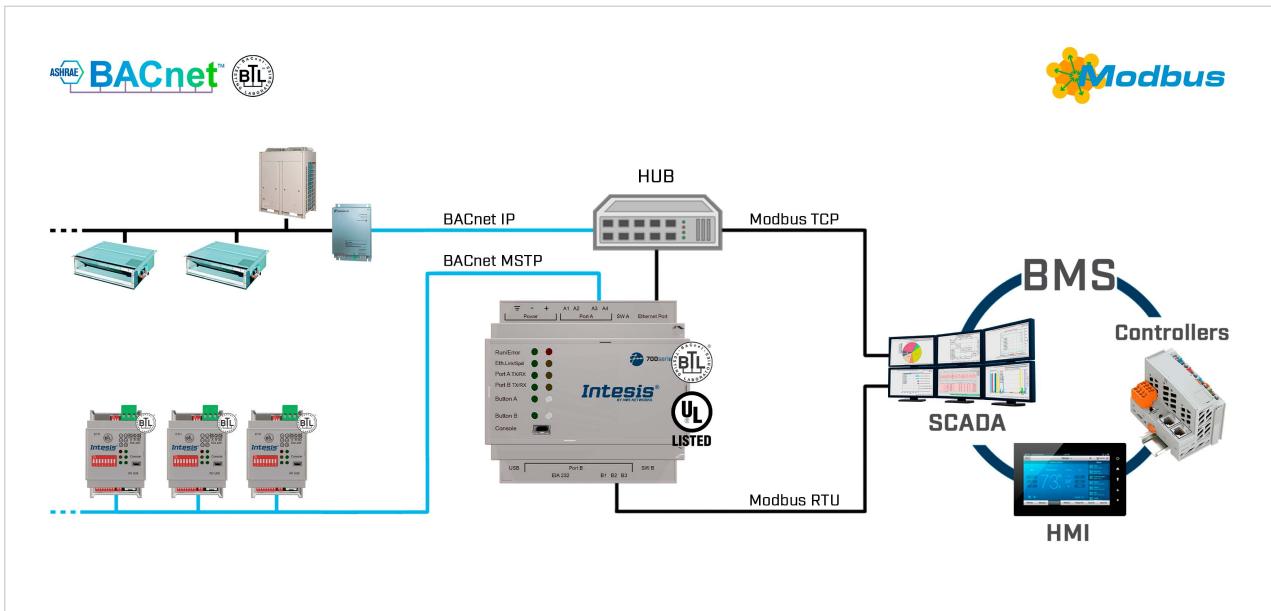


Figure 2. Integration of BACnet IP or MSTP devices into Modbus TCP or RTU control and monitoring systems

5.2. Functionality

From the BACnet point of view, the gateway continuously polls the installation or devices, storing in its memory the values of the points that you previously configured to be read. With the change of value (COV) system, the gateway can also subscribe to configured BACnet points, automatically receiving their values when they change. On the other hand, from the Modbus point of view, the control and monitoring system reads and writes those stored points.

This is possible because, inside the gateway, all BACnet objects of the server devices are associated with Modbus registers. This makes the Modbus control and monitoring system perceive the BACnet installation (all the server devices) as if it were a single Modbus device.

When the gateway polls the BACnet devices, if a non-response is detected, the corresponding virtual signal inside the gateway will be activated, indicating the communication error to the Modbus system as error registers.

6. ASCII Server to BACnet Client

6.1. Specific Gateway Introduction

This section describes the integration of BACnet/IP and MSTP devices into ASCII IP or Serial control and monitoring systems using the **ASCII Server to BACnet Client** application.

This integration allows any ASCII system to access the signals and resources of BACnet devices as if they were part of the system itself and vice versa.

The gateway configuration is carried out through the configuration tool.

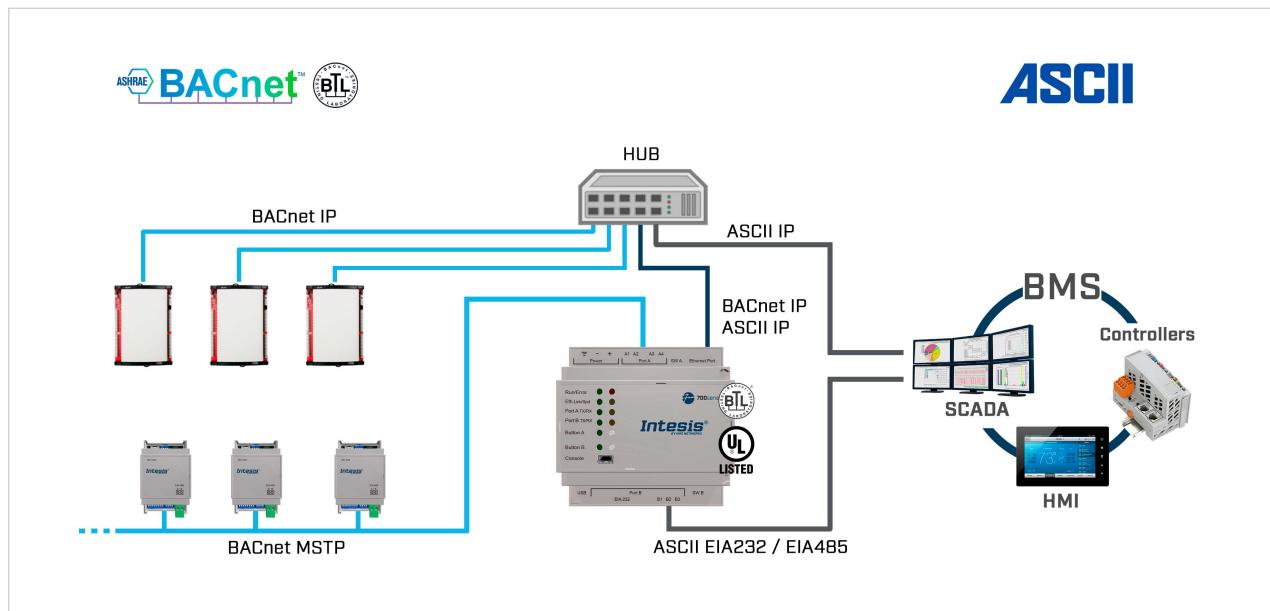


Figure 3. Integration of BACnet/IP or MSTP devices into ASCII TCP/IP or Serial control and monitoring systems

6.2. Functionality

From the BACnet point of view, the gateway continuously polls the installation or devices, storing in its memory the values of the points that you previously configured to be read. On the other hand, from the ASCII point of view, the control and monitoring system reads and writes those stored points.

This is possible because, inside the gateway, all BACnet objects of the server devices are associated with ASCII objects. This makes the ASCII control and monitoring system perceive the BACnet installation (all the server devices) as if it were a single ASCII device.

When the gateway polls the BACnet devices, if a non-response is detected, the corresponding virtual signal inside the gateway will be activated, indicating the communication error to the ASCII system.

7. Gateway Capacity

Table 1. For BACnet server to Modbus client

Element	100 version	250 version	600 version	1200 version	3000 versions
Type of BACnet devices	Those supporting communication with BACnet/IP and MSTP				
Maximum number of BACnet objects	100	250	600	1200	3000
Maximum number of BACnet Subscriptions (COV) requests	200	500	1200	2400	6000
Type of Modbus server devices	Those supporting communication over Modbus TCP/IP and RTU (EIA-485)				
Number of Modbus server devices supported by the device	Up to 5 Modbus TCP nodes/devices Up to 255 Modbus RTU devices per TCP/RTU node				

Table 2. For Modbus server to BACnet client

Element	100 version	250 version	600 version	1200 version	3000 version
Type of BACnet devices	Those supporting communication with BACnet/IP and MSTP				
Maximum number of BACnet devices	256				
Maximum number of Modbus Registers	100	250	600	1200	3000
Modbus link layers supported	Those supporting communication over Modbus TCP/IP and RTU (EIA-485)				

Table 3. For ASCII server to BACnet client

Element	100 version	250 version	600 version	1200 version	3000 version
Type of BACnet devices	Those supporting communication with BACnet/IP and MSTP				
Maximum number of BACnet devices	256				
Maximum number of ASCII Registers	100	250	600	1200	3000
ASCII link layers supported	Those supporting communication with ASCII client with simple messages through a TCP/IP or serial (EIA-232/EIA-485) connection				

8. BACnet Interface

8.1. General Description

BACnet is a solid standard with many detailed concepts, but for this manual purposes, we will focus on the two most fundamental concepts:

- BACnet client, which is the device that sends service requests to the server.
- BACnet server, which is the device that performs the requested service and reports the result back to the client.

BACnet server devices are represented in the form of *devices* holding *objects*. Usually, every physical device corresponds to a logical one. The objects can be of different types depending on the data and functionality they represent: Analog input, Analog output, Digital input, etc.

NOTE

- Output objects are objects meant to be written in the direction BACnet network to the device.
- Input objects are meant to offer status information of the BACnet device.
- Value objects are bidirectional.

Every object has different properties. The most meaningful one is the **Present_Value** property, which indicates the real value of the object. Also, the gateway uses this property to read and write values. Every object of the same type in a device is identified with its associated **object instance**.

8.2. BACnet Client

8.3. Description

The gateway implements a single BACnet object of its own: its BACnet Device Object, which contains its BACnet Device Identifier and basic properties of the gateway as a BACnet device (name, firmware version, etc.).

NOTICE

When acting as a client device, the Intesis gateway is classified under the device profile of a BACnet Application Specific Controller (B-ASC). For further details, check out the product website for the BACnet client PIC statements.

The gateway emulates a client device in the BACnet system.

These are the possible BACnet objects supported by the Intesis gateway:

Object Type	Property	Description
Analog Input	Present Value	Analog signal, for example, Ambient temperature
Analog Output	Present Value	Analog signal
Analog Value	Present Value	Analog signal, for example, Temperature set point value
Binary Input	Present Value	Digital signal, for example, ON/OFF status
Binary Output	Present Value	Digital signal, for example, ON/OFF command
Binary Value	Present Value	Digital signal, for example, ON/OFF status/command
Multistate Input	Present Value	Multistate signal, for example, Working mode status
Multistate Output	Present Value	Multistate signal
Multistate Value	Present Value	Multistate signal, for example, Working mode command
Accumulator	Present Value	
Loop	Present Value	

Every signal is identified with its associated Device + Object Type + Object Instance.

IMPORTANT

Though BACnet IP and BACnet MSTP physical layers are supported, only one physical layer can be used at a time, i.e., if communicating to BACnet using BACnet IP, BACnet MSTP cannot be used, and vice versa.

NOTE

Using the configuration tool, it's possible to scan the BACnet network for available devices and their objects, which can later be directly added to your configuration. This feature facilitates the configuration process, avoiding entering them manually.

8.4. Points Definition

Every point defined in the Intesis gateway has the following BACnet features associated with it:

Feature	Description
BACnet Device	<p>BACnet device to which the point belongs (a list of 256 BACnet devices can be defined in the Intesis gateway).</p> <p>For every BACnet device defined, a virtual signal is created automatically in the gateway to report the communication status with the BACnet device. Like the rest of the points, this signal is also available from the other protocol's interface.</p>
BACnet object type	<ul style="list-style-type: none"> • AI: Analog Input • AO: Analog Output • AV: Analog Value • DI: Digital Input • DO: Digital Output • DV: Digital Value • MI: Multistate Input • MO: Multistate Output • MV: Multistate Value • LOOP: Loop • ACUM: Accumulator <div style="border: 1px solid black; padding: 5px; margin-top: 10px;"> <p>IMPORTANT Please read the documentation of the BACnet devices you're willing to integrate to know their object types.</p> </div>
BACnet object instance	<p>BACnet object instance for the point on the external BACnet device.</p> <div style="border: 1px solid black; padding: 5px; margin-top: 10px;"> <p>IMPORTANT Please read the documentation of the BACnet devices you're willing to integrate to know their object types.</p> </div>

8.5. BACnet Server

8.6. Description

NOTICE

When the Intesis gateway acts as a server device, it is classified under the device profile of a BACnet Advanced Application Controller (B-AAC). For further details, check out the product website for the BACnet client PIC statements.

Using the configuration tool, you can configure the object type associated with the signal on the other protocol.

To facilitate the translation towards BACnet, the following object type options are available:

Object Type	ID
Analog-Input	0
Analog-Output	1
Analog-Value	2
Binary-Input	3
Binary-Output	4
Binary-Value	5
Calendar	6
Device	8
Multistate-Input	13
Multistate-Output	14
Multistate-Value	19
Notification-Class	15
Schedule	17
Trend-Log	20
Trend-Log-Multiple	27

Every signal of the Intesis gateway can have several objects. These objects and their properties can be configured with the configuration tool.

Depending on the field device protocol, you can define the signals using one of the following options:

- Configuring them manually for each or multiple signals at the time.
- Importing a file with the signals of the field devices.
- Scanning the network of the devices if this is supported.

Example 1. Signals compatibility

You can choose an object from the BACnet server column that is compatible with this signal. For example, a writable register in the Modbus device can be an output object type on the BACnet server side; a readable and writable register can be a value object type, etc.

NOTICE

The configuration tool provides default templates that make this signals assignment process easier. Also, you only have to click the **Check table** button on the bottom right corner of the window to know if everything is correct or if there's some mistake. The project is also automatically checked before you transfer it to the gateway.

All objects definition, BIBBs, and details about the implementation can be found on the BACnet server PICS on the product website.

8.7. BACnet IP

The UDP communication port is the main setup parameter for BACnet IP, besides basic IP settings (IP, netmask, default gateway). The Intesis gateway uses the 47808 (0xBAC0) port by default, which you can change through the configuration tool.

When using BACnet IP, the gateway can also act as a foreign device to communicate with devices in another network domain. Alternatively, you can set it as a BBMD (Bacnet IP Broadcast Management Device). This functionality facilitates the communication of devices placed in other networks with the devices in the gateway network.

IMPORTANT

BACnet IP and BACnet MSTP communication can not be used simultaneously.

8.8. BACnet MSTP

When you choose BACnet MSTP (serial communication), you have to use the configuration tool to associate the gateway with a MAC address within the MSTP network segment.

Baud rates supported for MSTP line are: 9600, 19200, 38400, 76800, 115200, or Autobausing (autodetect).

Standard wiring guidelines for EIA-485 apply to the BACnet MSTP line.

IMPORTANT

BACnet MSTP and BACnet IP communication can not be used simultaneously.

9. Modbus Interface

9.1. General Description

The Modbus protocol is an application-layer messaging protocol developed by Modicon in 1979. It is used to establish master-slave/client-server communication between intelligent devices over different types of buses or networks. The Intesis gateway supports Modbus TCP and RTU.

Modbus is a request/reply protocol and offers services specified by function codes. Modbus function codes are elements of Modbus request/reply PDUs (Protocol Data Unit).

9.2. Modbus Server Interface

9.3. Description

The gateway acts as a server device in its Modbus interface, which can be:

- The Ethernet port for Modbus TCP.
- The EIA-485/EIA.232 ports for Modbus RTU.

NOTICE

Modbus RTU and TCP modes can be active in the gateway one at a time or both simultaneously.

To access the gateway's points and resources from a Modbus client device, you must specify as Modbus register addresses those configured inside the gateway corresponding to the signals on the field device protocol.

9.4. Functions Supported

NOTICE

This part is common for both Modbus TCP and Modbus RTU.

Table 4. Modbus functions

#	Function	Read/Write
01	Read Coils	R
02	Read Discrete Inputs	R
03	Read Holding Registers	R
04	Read Input Registers	R
05	Write Single Coil	W
06	Write Single Register	W
15	Write Multiple Coils	W
16	Write Multiple Registers	W

If poll records are used to read or write more than one register, the range of addresses requested must contain valid addresses; if not, the Intesis gateway will return the corresponding Modbus error code.

All registers are of 2 bytes, even if they are associated with signals of bit type on the other protocol's side. Its content is expressed in MSB .. LSB.¹

Modbus error codes are fully supported. They are sent whenever a non-valid Modbus action or address is required.

¹MSB: most significant bit; LSB: less significant bit

9.5. Modbus RTU

Using the configuration tool, you can set these parameters:

- Baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 56700 and 115200 bps
- Data Bits: 8 bits
- Parity: none, even, or odd
- Stop Bits: 1 and 2 bits
- Modbus server address
- Physical connection (EIA-232 or EIA-485)

IMPORTANT

- EIA-232 connector uses RX, TX, and GND lines.
- EIA-485 connector uses B-, A+, and SNGD.

9.6. Modbus TCP

Modbus TCP communication is characterized basically by the embedding of the Modbus RTU protocol into TCP/IP frames, which allows faster communication and a longer distance between client and server devices in comparison with RTU communication over a serial line. Another benefit is using common TCP/IP infrastructure in buildings and transmitting over WAN or the internet. It also allows the coexistence of one or more clients and, of course, one or more server devices in a given network, all interconnected through a TCP/IP-based network.

Use the configuration tool to configure the IP settings of the gateway (DHCP status, own IP, netmask, and default gateway) and the TCP port.

NOTE

The default port is 502.

9.7. Modbus Server Interface Points Definition

The Modbus registers are fully configurable through the configuration tool; any point in the gateway can be freely configured with the desired Modbus register address.

Every point defined in the gateway has the following Modbus features associated with it:

Feature	Description
#Bits	<ul style="list-style-type: none"> • 1 bit • 16 bits • 32 bits
Data Coding Format	<ul style="list-style-type: none"> • 16/32 unsigned • 16/32 bits signed (one's complement – C1) • 16/32 bits signed (two's complement – C2) • 16/32 bits Float • 16/32 bits Bitfields • Error comm.
Byte Order	<ul style="list-style-type: none"> • Big Endian • Little Endian • Word Inverted Big Endian • Word Inverted Little Endian
Register Address	The Modbus register address inside the server device for the point.
Bit inside the register	Bit inside the Modbus register (optional). The Intesis gateway allows bit decoding from generic 16 bits input/holding Modbus registers. <i>Some devices use the bit coding into 16 bits input/holding Modbus registers to encode digital values. These registers are generally accessible using Modbus function codes 03 and 04 (read holding/input registers).</i>
Read/Write	<ul style="list-style-type: none"> 0: Read 1: Write 2: Trigger

9.8. Modbus Client Interface

9.9. Description

The Intesis gateway acts as a client device in the Modbus TCP network, Modbus RTU client, or both.

IMPORTANT

Other Modbus devices connected to the network communicating with the gateway must always be server devices.

The gateway supports communication with up to five Modbus TCP server devices.

For every defined point belonging to a particular Modbus TCP server device, a server address from 0 to 255 can also be freely configured. This feature offers great flexibility for installations. For example, when integrating several Modbus RTU server devices connected in a serial line, with an RTU/TCP converter on top of this serial line, it enables access to the RTU server points through TCP/IP. In this case, the RTU/TCP converter communicating in TCP identifies the destination of the point (server address in the RTU network) by the contents of the server address field.

Modbus TCP server devices are characterized by their IP address and predefined registers address map. This address map specifies the address, type, and characteristics of the Modbus server device's internal points (commonly called registers). These registers are accessible using the Modbus TCP protocol.

Communication parameters of the Intesis gateway (IP address, netmask, default router address, and TCP port) are fully configurable to adapt to any IP network and server device.

The Modbus TCP protocol defines different function code types to read/write different register types from the Modbus devices. It also defines different data formats to encode values.

Also, the data encoding used for 16 bits registers (big-endian or little-endian) can be configured in the Intesis gateway. This is the byte order for data encoding (MSB..LSB or LSB..MSB)². Although specified as big-endian in the Modbus protocol specification, this data encoding varies depending on the manufacturer/type of server.

9.10. Points Definition

Every point defined in the Intesis gateway has the following Modbus features associated with it:

Feature	Description
Modbus device	Modbus TCP device to which belongs the point, from a list of Modbus TCP server devices that can be defined in the Intesis gateway (up to 5). For every defined Modbus TCP server device, a virtual signal is automatically created in the Intesis gateway to report the communication with the device. Like the rest of the points, this signal is also available from the field device interface.
Function code	01 Read Coils
Read func.	02 Read Discrete Inputs
Write func.	03 Read Holding Registers 04 Read Input Registers 05 Write Single Coil 15 Write Single Register 06 Write Multiple Coils 16 Write Multiple Register
#Bits	Number of bits to be used by this signal.
Data coding format	<ul style="list-style-type: none"> • 16/32/48/64 bits unsigned • 16/32/48/64 bits signed (one's complement – C1) • 16/32/48/64 bits signed (two's complement – C2) • 16/32/48/64 bits Float • 16/32/48/64 bits Bitfields • Error comm
Byte order	<ul style="list-style-type: none"> • Big-endian • Little-endian • Word inverted big-endian • Word inverted little-endian
Register address	The Modbus register address inside the server device for the point.
Bit inside the register	Bit inside the Modbus register (optional). The Intesis gateway allows bit decoding from generic 16 bits input/holding Modbus registers.
	NOTICE Some devices use the bit coding into 16 bit input/holding Modbus register to encode digital values. These registers are generally accessible using Modbus function codes 03 and 04 (read holding/input registers).

²MSB: most significant bit; LSB: less significant bit

10. ASCII Interface

10.1. Description

The Intesis gateway can be connected to any ASCII-enabled device via its EIA-232, EIA-485, or TCP/IP (Ethernet) connectors, supervising and controlling its internal points through this interface by using simple ASCII messages.

When the gateway receives a new value for a point from the other protocol system, its ASCII interface sends the corresponding message indicating the new value to the ASCII system.

IMPORTANT

- This functionality is only possible if the point is configured to send these "spontaneous messages." If it doesn't, the new value will remain available in the gateway for a later poll of the ASCII system.
- You can configure this behavior for every gateway point through the configuration tool.

10.2. ASCII Serial

The ASCII interface and the ASCII master device serial connection type must be the same.

10.3. ASCII TCP

The Intesis gateway allows the configuration of:

- TCP port (5000 by default)
- IP address
- Subnet mask
- Default router address

10.4. Address Map

The ASCII address map is fully configurable; any point in the gateway can be freely configured with the desired internal register address.

10.5. Points Definition

Every point defined in the gateway has the following ASCII features associated with it:

Feature	Description					
Signal	Signal or point description. Only for information purposes at the user level.					
ASCII string	Defines the ASCII string that will be used to access this register. • Max. length: 32 characters					
Read/Write	Defines the current function (read, write, or both) to be used from the ASCII side with this register. It can't be configured as it is directly set when selecting the current BACnet type object.					
Function	Read	Write	Read/Write			
BACnet object	Analog input Binary input Multistate input Loop Accumulator	Analog output Binary output Multistate output	Analog value Binary value Multistate value			
Spontaneous	Determines the creation and sending of an ASCII message when any point from the BACnet side changes its value.					
A/D (Analog/Digital)	Defines the current variable type for this register from the ASCII side. It can't be configured as it is directly set when selecting the current BACnet type object.					
Type	Analog	Digital				
BACnet object	Analog input Analog output Analog value Multistate input Multistate output Multistate value Loop Accumulator	Binary input Binary output Binary value				

10.6. Messages

The ASCII side communicates through simple ASCII messages.

NOTE

You can configure these messages to match the ASCII master device using the configuration tool.

The ASCII messages used to read/write points have the following format:

Message to read a point value:

ASCII_String?\r Where:

- **ASCII_String** is the string indicating the point address inside the Intesis gateway.
- ? is the character used to indicate that this is a reading message (configurable with Intesis MAPS).
- \r is the carriage return character (HEX 0x0D, DEC 13).

Message to write a point value:

ASCII_String=vv\r Where:

- **ASCII_String** is the string indicating the point address inside the Intesis gateway.
- = is the character used to indicate that this is a reading message (configurable with Intesis MAPS).
- **vv** is the current point value.
- \r is the carriage return character (HEX 0x0D, DEC 13).

Message about a point value: sent spontaneously when the Intesis gateway receives a change from the BACnet side or in response to a previous poll for the point.

ASCII_String=vv\r

Where:

- **ASCII_String** is the string indicating the point address inside the Intesis gateway.
- **=** is the character used to indicate where the point data starts.
- **vv** is the current point value.
- **\r** is the carriage return character (HEX 0x0D, DEC 13).

11. Connections

Please find in the following table the gateway's ports and their use depending on the configuration.

Configuration	Port A EIA-485	Port B EIA-485	Port B EIA-232	Ethernet
IN-BAC-MBM	Modbus RTU	Bacnet MSTP, Modbus RTU	NA	Modbus TCP, BACnet IP, and Console*
IN-MBS-BAC	BACnet MSTP	Modbus RTU	Modbus RTU	Modbus TCP, BACnet IP, and Console*
IN-ASCII-BAC	BACnet MSTP	ASCII	ASCII	BACnet IP, ASCII TCP, and Console*

*Console: you can use the Ethernet port to connect the gateway to the PC for configuration purposes.

The following table shows the pinout correspondence for each serial port.

Port A EIA-485	Port B EIA-485	Pin-out
A4	B1	B-
A3	B2	A+
A1 and A2	B3	SNGD

11.1. Power Supply

NOTE

The way to supply power to the gateway is the same for all applications.

IMPORTANT

- Only use NEC class 2 or limited power source (LPS) and SELV-rated power supply.
- A wrong connection may cause earth loops that can damage the Intesis gateway and/or any other system equipment.

- If using a DC power supply:

IMPORTANT

- Observe polarity on the power connection.
- Ensure the voltage applied is within the admitted range (see [Technical Specifications \(page 33\)](#)).

- If using an AC power supply:

IMPORTANT

- Ensure the voltage applied is 24 Vac (+/- 5%).
- Ensure the same power supply is not powering any other device.
- Do not connect any of the terminals of the AC power supply to earth.

Once connected, the Run LED of the gateway will turn on.

11.2. Connection Diagrams for each Application

Look for the appropriate diagram depending on your application:

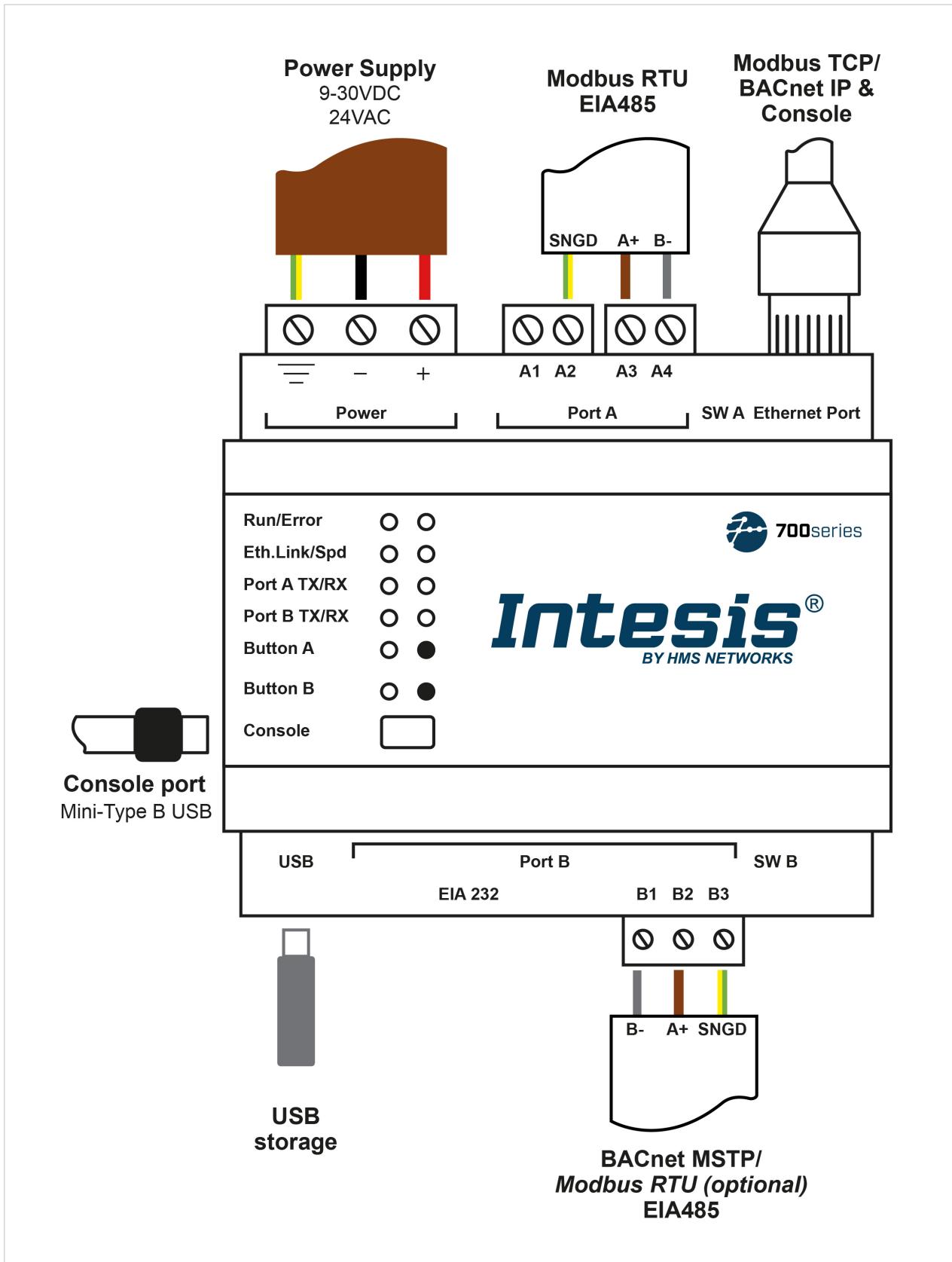


Figure 4. BACnet server to Modbus client

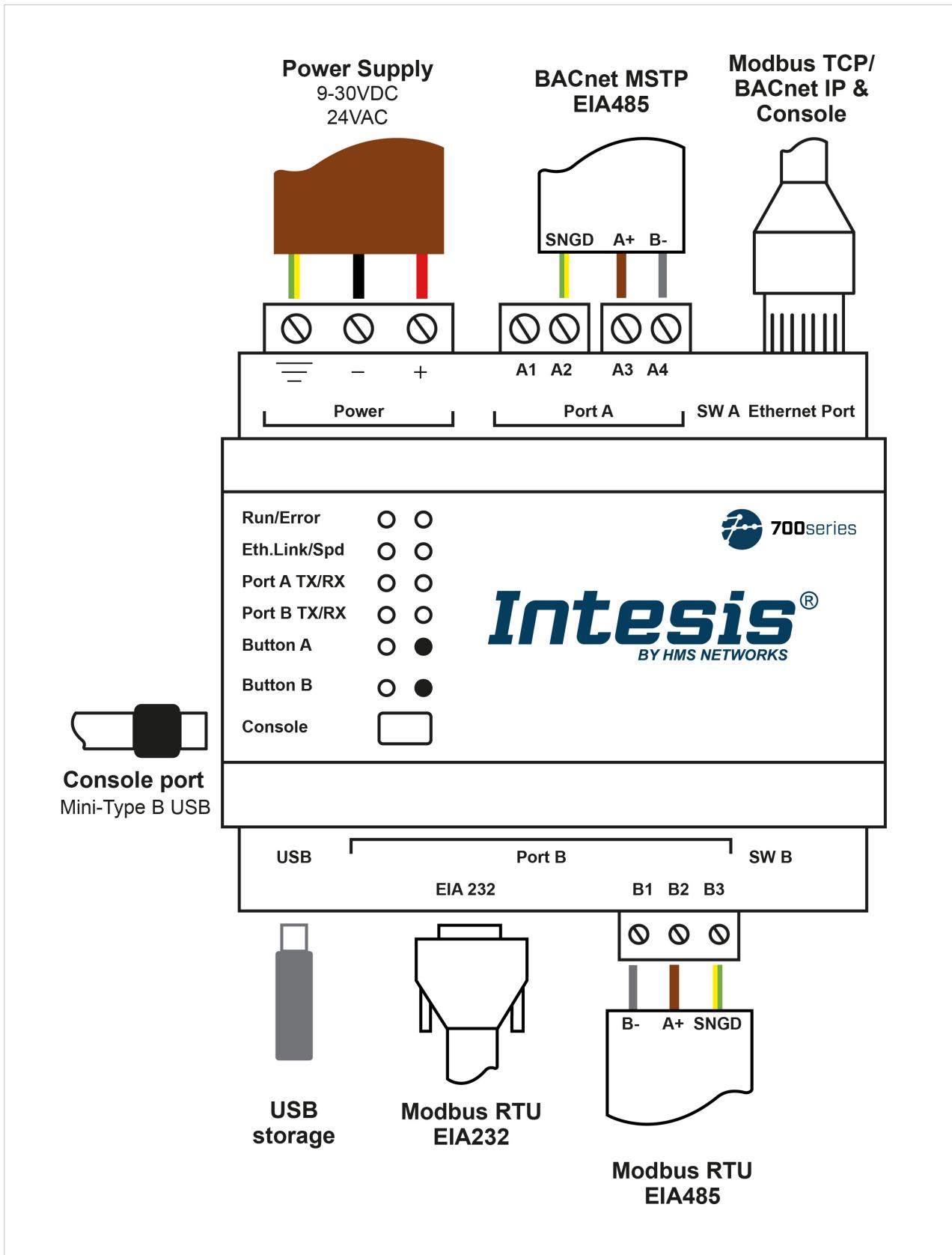


Figure 5. Modbus server to BACnet client

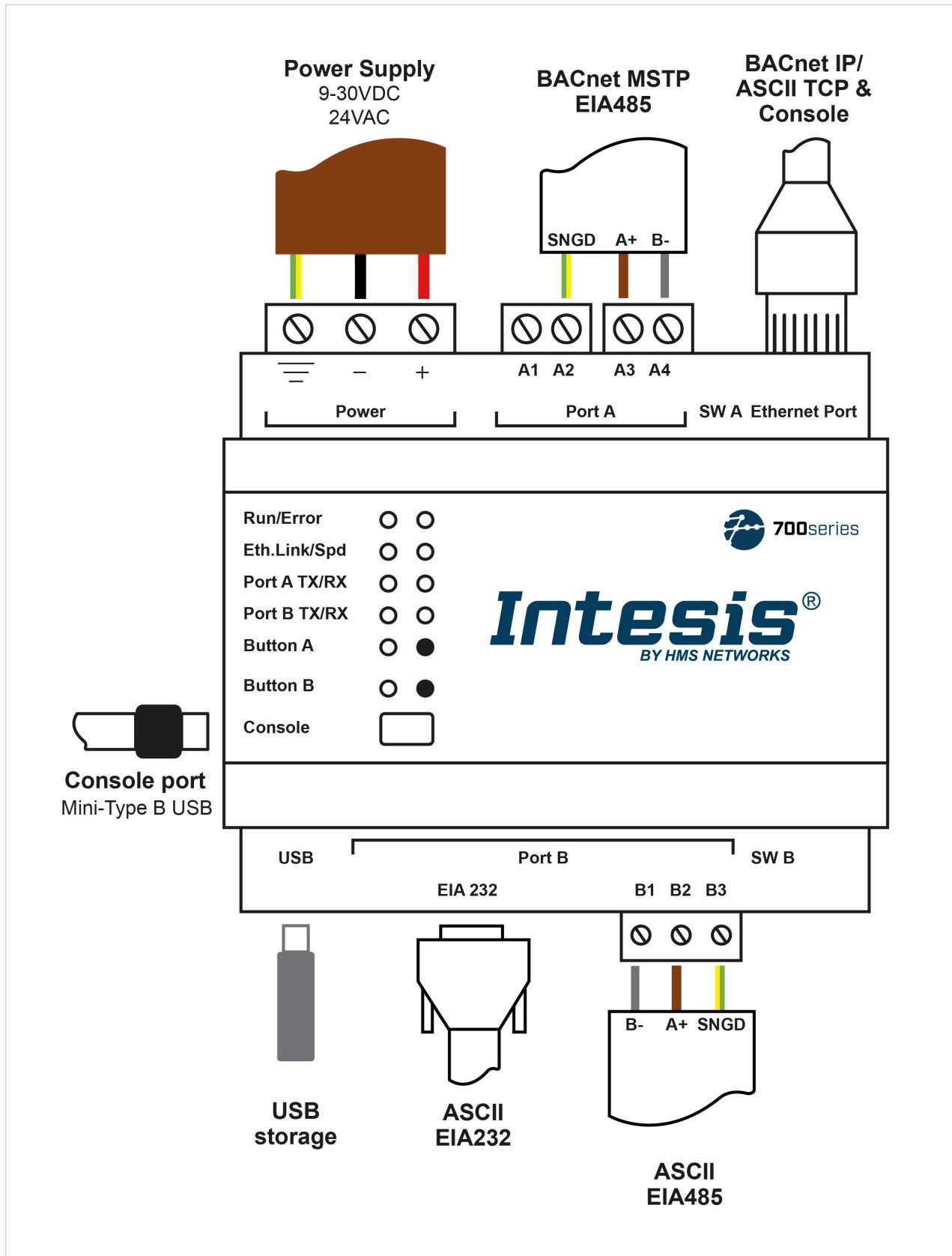


Figure 6. ASCII server to BACnet client

11.3. Connection to Modbus

- **Ethernet port for Modbus TCP and Console connection**

Connect the communication cable from the Modbus TCP network to the Ethernet port of the gateway.

IMPORTANT

Use a straight Ethernet UTP/FTP CAT5 or higher cable.

IMPORTANT

If communicating through the LAN of the building, contact the network administrator and make sure traffic on the used port is allowed through all LAN paths.

NOTE

After powering up the Intesis gateway for the first time, DHCP will be enabled for 30 seconds. After that time, if a DHCP server provides no IP, the default IP 192.168.100.246 will be set.

- **Port B EIA-485 connection for Modbus RTU**

Connect the EIA-485 bus to connectors B1 (B-), B2 (A+), and B3 (SNGD) of the gateway's Port B.

IMPORTANT

Respect the polarity.

IMPORTANT

Remember the characteristics of the standard EIA-485 bus:

- Maximum distance of 1200 meters.
- Maximum of 32 devices connected to the bus.
- A termination resistor of $120\ \Omega$ is needed at each end of the bus. The gateway has an internal bus biasing circuit already incorporating the termination resistor. It can be enabled using the DIP switches:
 - **Position 1**
ON: $120\ \Omega$ termination active
OFF: $120\ \Omega$ termination inactive
 - **Position 2-3**
ON: Polarization active
OFF: Polarization inactive
- If the termination resistor is enabled and you install the gateway at one of the ends of the bus, do not install an additional termination resistor at that end.

NOTE

Only for the Modbus client to BACnet server application, you can also use **Port A** for the Modbus RTU connection (see [Figure 4 \(page 22\)](#)).

- **Port B EIA-232**

Connect the serial cable EIA-232 from the external serial device to the EIA-232 connector of the gateway Port B.

NOTE

This is a DB9 male (DTE) connector that only uses the TX, RX, and GND.

IMPORTANT

Respect the maximum distance of 15 meters.

11.4. Connection to BACnet

- **Ethernet connection for BACnet IP**

Connect the BACnet IP network to the Ethernet port of the gateway. The correct cable to use depends on where the gateway is connected:

- Connecting directly to a BACnet IP device: use a crossover Ethernet UTP/FTP CAT5 or higher cable.
- Connecting to a hub or switch of the LAN of the building: use a straight Ethernet UTP/FTP CAT5 or higher cable.

IMPORTANT

If there is no response from the BACnet devices to the frames sent by the gateway:

- Check that they are operative and reachable from the network connection used by the gateway.
- Check the gateway Ethernet interface sending *Pings* to its IP address using a PC connected to the same Ethernet network.
- Contact the network admin to be sure there are no limitations regarding UDP communication or ports blocked.

IMPORTANT

If communicating through the LAN of the building, contact the network administrator and make sure traffic on the used port is allowed through all LAN paths.

NOTE

After powering up the Intesis gateway for the first time, DHCP will be enabled for 30 seconds. After that time, if a DHCP server provides no IP, the default IP 192.168.100.246 will be set.

- **Port B EIA-485 connection for BACnet MSTP**

Connect the EIA-485 bus to connectors B1 (B-), B2 (A+), and B3 (SNGD) to the Port B of the gateway.

IMPORTANT

Respect the polarity.

IMPORTANT

Remember the characteristics of the standard EIA-485 bus:

- Maximum distance of 1200 meters.
- Maximum of 32 devices connected to the bus.
- A termination resistor of $120\ \Omega$ is needed at each end of the bus. The gateway has an internal bus biasing circuit already incorporating the termination resistor. It can be enabled using the DIP switches:
 - **Position 1**
ON: $120\ \Omega$ termination active
OFF: $120\ \Omega$ termination inactive
 - **Position 2-3**
ON: Polarization active
OFF: Polarization inactive

IMPORTANT

If the termination resistor is enabled and you install the gateway at one of the ends of the bus, do not install an additional termination resistor at that end.

11.5. Connection to ASCII

- **Ethernet port for ASCII TCP**

Connect the communication cable from the ASCII TCP network to the Ethernet port of the gateway.

IMPORTANT

Use a straight Ethernet UTP/FTP CAT5 or higher cable.

IMPORTANT

If communicating through the LAN of the building, contact the network administrator and make sure traffic on the used port is allowed through all LAN paths.

NOTE

After powering up the Intesis gateway for the first time, DHCP will be enabled for 30 seconds. After that time, if a DHCP server provides no IP, the default IP 192.168.100.246 will be set.

- **Port B EIA-485 connection for ASCII serial**

Connect the EIA-485 bus to connectors B1 (B-), B2 (A+), and B3 (SNGD) to the Port B of the gateway.

IMPORTANT

Respect the polarity.

IMPORTANT

Remember the characteristics of the standard EIA-485 bus:

- Maximum distance of 1200 meters.
- Maximum of 32 devices connected to the bus.
- A termination resistor of $120\ \Omega$ is needed at each end of the bus. The gateway has an internal bus biasing circuit already incorporating the termination resistor. It can be enabled using the DIP switches:
 - **Position 1**
ON: $120\ \Omega$ termination active
OFF: $120\ \Omega$ termination inactive
 - **Position 2-3**
ON: Polarization active
OFF: Polarization inactive
- If the termination resistor is enabled and you install the gateway at one of the ends of the bus, do not install an additional termination resistor at that end.

- **Port B EIA-232 for ASCII serial**

Connect the serial cable EIA-232 from the external serial device to the EIA-232 connector of the gateway Port B.

NOTE

This is a DB9 male (DTE) connector that only uses the TX, RX, and GND.

IMPORTANT

Respect the maximum distance of 15 meters.

11.6. Console and USB Connections

- **Console port**

Connect a mini-type B USB cable from the gateway console port to a computer running the configuration tool.

NOTICE

With this software tool, you can configure and monitor the gateway.

NOTE

If your computer has an Ethernet port, you can also use the **Ethernet** port of the gateway to connect both.

- **USB port**

TIP

You can connect a USB storage device to the USB port of the gateway to store logs.

IMPORTANT

The USB port doesn't support HDD devices.

12. Set-up Process with the Configuration Tool

12.1. Prerequisites

For this integration, you need:

- The items delivered by HMS Networks:
 - The Intesis IN700485xxxO000 protocol translator gateway.
 - A mini-type B USB to USB cable.
 - Link to download the configuration tool.
 - Product documentation.
- The respective client or server devices connected to either the EIA-485/EIA-232 Port B or to the Ethernet port.

12.2. Intesis MAPS: Configuration and Monitoring Tool

12.2.1. Introduction

To configure the gateway, you need a PC running Intesis MAPS. You can download this configuration tool from <https://www.intesis.com/products/intesis-maps>.

Intesis MAPS is a Windows® compatible software explicitly developed to monitor and configure Intesis gateways.

NOTE

The following sections provide some primary and general information to configure this gateway. Although Intesis MAPS is an easy-to-manage user-friendly tool, you may need more specific and comprehensive information about the different parameters and how to configure them. If so, please refer to these specific Intesis MAPS user manuals depending on the protocol you are working with:

- [BACnet](#)
- [Modbus](#)

NOTICE

The Intesis MAPS user manual referring to ASCII protocol will come soon.

12.2.2. Template Selection

When opening the software, you will see the main window, called **Getting started**. Here you can select the template for your application:

1. Click **Create New Project** in the left menu.
2. Select the appropriate template for your application. To filter the selection:
 - Click on the protocol logos.
 - Type the order code in the **Order Code** field,
 - Check out the list to find the template you need.

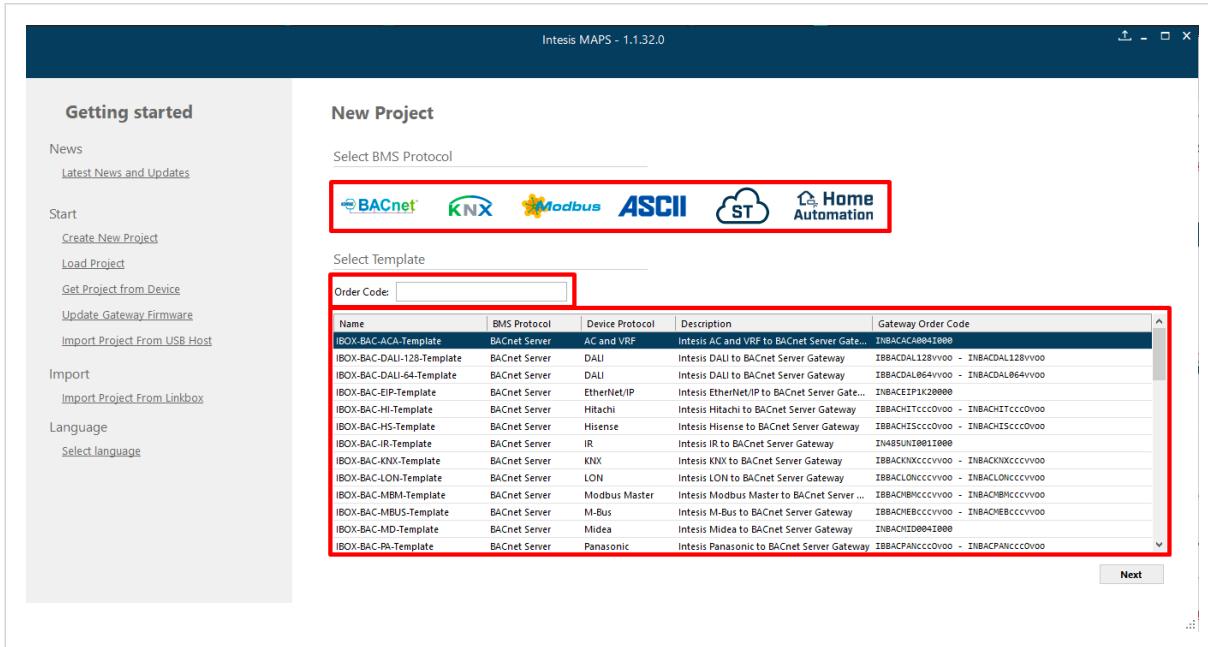


Figure 7. The three possibilities for the template selection

3. Select the template and click **Next** or double-click it in the list.

12.2.3. Connection Tab

1. On the Connection Type parameter select the way you connected the gateway to your PC:
 - Select **IP** if you are using the **Ethernet port** of the Intesis gateway.

IMPORTANT

Make sure you have an internet connection.

NOTE

When using IP connection, the device's name is listed in black if it's compatible with the selected template and red if it's not.

- Select **USB Port** if you are using the **Console port** of the gateway.

2. Select your gateway from the **Discovered Gateways** list on the left.
3. Click **Connect**.

NOTE

If your Intesis gateway firmware doesn't match the selected template, a pop-up window will prompt you to upload the correct firmware.

IMPORTANT

This function is only available for the 700 Series platform.

12.2.4. Configuration Tab

In the Configuration tab, you can configure general parameters and parameters for both protocol interfaces of the Intesis gateway.

On the left side of the window, three submenus are shown:

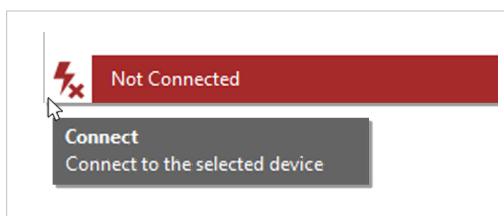
- Submenu 1: **General** configuration parameters for the gateway.
- Submenus 2 and 3: BMS and Device respective protocols configuration parameters.

12.2.5. Signals Tab

This menu lists all available signals and parameters for both protocols.

NOTE

You can find more information on every parameter and how to configure it in the Intesis MAPS user manual.


12.2.6. Receive/Send Tab

Send

Once you have finished setting the parameters, you have to send the configuration to the gateway.

Follow these steps:

1. Click the **Send** button.
 - a. If the gateway is still factory-set, you will be prompted to save the project on your PC. Once you save it, the configuration is automatically sent to the gateway.
 - b. If you have already saved the project, the configuration is automatically sent to the gateway.
2. Connect again with the gateway after sending the file.

NOTICE

The gateway will reboot automatically once the new configuration is loaded. This process may take a few seconds.

Receive

Use this function to get the configuration of a gateway, for example, when you need to change some parameters of a gateway already mounted in an installation.

Once the configuration is completed and sent, the gateway is already operative. Even so, you should check that everything is working correctly by entering the Diagnostic tab.

12.2.7. Diagnostic

IMPORTANT

Connection with the gateway is required to use the diagnostic tools.

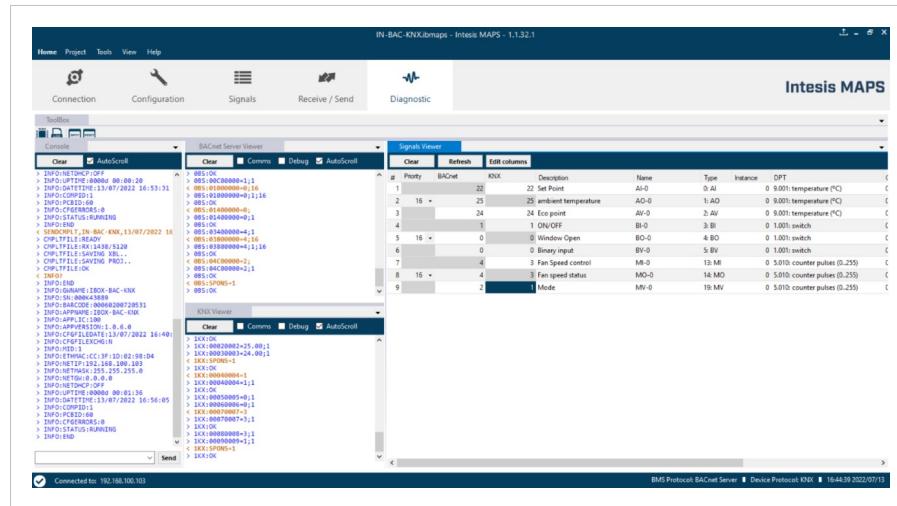


Figure 8. Diagnostic tab window. Find the ToolBox between the upper tabs bar and the Console view. Below it, from left to right: Console viewer, Protocol viewers (one above the other), and the Signals viewer

This section has two main parts:

ToolBox Use the tools section to:

- Check the current hardware status of the gateway.
- Save communication logs to a ZIP file for diagnostic purposes.
- Get information on the gateway.
- Reset the gateway.

Viewers Intesis MAPS provides several viewers:

- A generic console viewer for general information about communications and the gateway status.
- A viewer for both protocols to check their current status.
- A signals viewers to simulate the BMS behavior or check the system's current values.

13. Technical Specifications

Enclosure	Plastic, type PC (UL 94 V-0) / Color: light grey. RAL 7035
Mounting	DIN rail EN60715 TH35
Terminal blocks wiring	Solid wires or stranded wires (twisted or with ferrule) are allowed. Per terminal: One core: 0.5 .. 2.5mm ² / Two cores: 0.5 .. 1.5mm ² / Three cores: not allowed
Power	1 x plug-in screw terminal block (3 poles) 9 to 36VDC, 1.7W 24VAC +/- 10% 50-60Hz, 1.7W Recommended: 24 VDC
Ethernet	1 x Ethernet RJ45 10/100BASE-T
Port A	1 x serial EIA-485 orange plug-in screw terminal block (2 poles) • A, B 1 x green plug-in screw terminal block (2 poles) • SGND (reference ground or shield) 1500 VDC isolation from other ports
SW A	1 x DIP switch for serial EIA-485 configuration: Position 1: • ON: 120 Ω termination active • OFF: 120 Ω termination inactive Position 2-3 • ON: polarization active • OFF: polarization inactive (default)
Port B	1 x serial EIA-232 DB9male Pinout from a DTE device / 1500VDC isolation from other ports (except Port B: EIA-485) 1 x serial EIA-485 green plug-in screw terminal block (3 poles) • A, B, SGND (reference ground or shield) 1500VDC isolation from other ports (except Port B: EIA-232)
SW B	1 x DIP switch for serial EIA-485 configuration: Position 1: • ON: 120 Ω termination active • OFF: 120 Ω termination inactive Position 2-3 • ON: polarization active • OFF: polarization inactive (default)
Battery	Size: coin 20mm x 3.2mm / Capacity 3V - 255mAh / Type: Manganese Dioxide Lithium
Console port	Mini Type-B USB 2.0 compliant / 1500VDC isolation
USB port	Type-A USB 2.0 compliant / Only for USB flash storage devices (USB pen drive) / HDD connection not allowed / Power consumption limited to 150mA
Push buttons	Button A and button B: Factory reset
Operational conditions	Temperature: 0 .. +60°C / Humidity: 5 .. 95% (no condensation)
LED indicators	10 x Onboard LED indicators: 1 x Power / 1 x Error / 2 x Ethernet / 2 x Port A / 2 x Port B / 1 x Button A / 1 x Button B

14. Dimensions

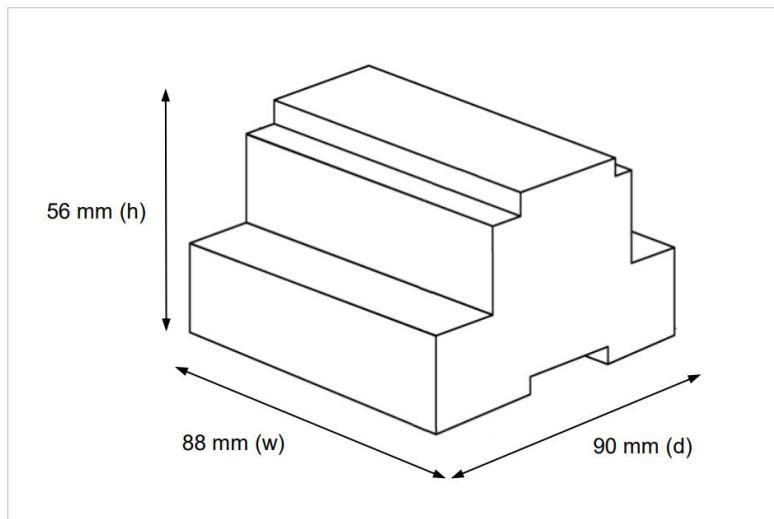


Figure 9. Gateway dimensions

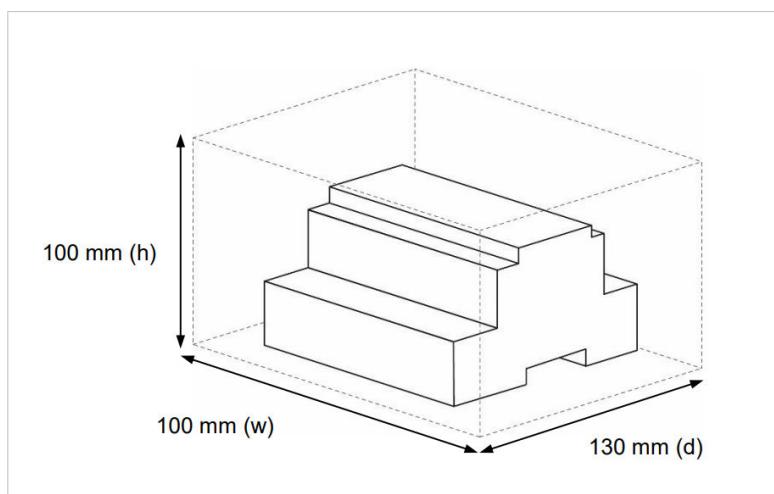


Figure 10. Space needed for connections

This page is intentionally left blank.

This page is intentionally left blank.