SIEMENS

API|-Reference

for the Siemens Bus Interface Modules
BIM M130, BIM M131, BIM M132 and BIM M135

and for the programmed KNX-Processors
184/01, 184/11 and 184/21

The data contained herein are subject to change without notice. Siemens does not warrant
for correctness or completeness of the documentation.

Document-Version: 1.2

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 1 of 24

SIEMENS

B I [0 Yo [T 1o o 4
P B (oY (=T =Y Lo 4
2.1 DEDOUNCING ettt ettt et e e e e e e aneeeeeaan 4
2.1.1 FUunction DebOUNCEINIT........uueieiee e e eaaaas 4
2.1.2 FUNCHON DEDOUNCE. ... et eeeaanas 4
2.2 ODJECH-HANAING ..ot 5
2.2.1 Function TeStANACOPYODIECT......eiiiiieiiii et 5
2.2.2 Function SetAndTransmitObJEC.........cooiiiiiii i 5
2.2.3 FUNCHON TESTODJECT. ...eiiiiiiiee ettt 6
2.2.4 Function TransSmMitODJECT.......couuiiie e 6
2.2.5 Function REAdODIECTuiiiiiiieie e 6
2.2.6 FUuNCtion SEtRAMEIAQSeeiiiiiiiiie e e e 7
2.3 1] 1= 7
2.3.1 Function GetSyStEMTIMEciiiiiie e e e 8
PG T2 U o o3 (o TR I 0 N 8

P T T U1 o3 (o) o T N0 4 15) 7= T 8
2.3.4 FUNCHON TMAAUSIAI.....ceeiiee e e e e e e e e e e e e e e e eeeaaas 9
2.3.5 Function TMISEXPIFEd........eiiiiiiiiieie e 9
2.3.6 Function TmISRUNNING........ooeiiiii e 9
2.3.7 FUNCHON TMSIOP . utteiieiiiiie ettt e e s eneeeeeaaes 10
2.4 PN B oTo] 0 1V7=T (= G 10
2.4.1 FUNCHON ADCINI ... e e e e et e e e e e e e e e e e e e e e e eeeeeanas 10
2.4.2 Function ADCShUtdOWNccooiiiiii 10
2.4.3 FUNCHON ADCREAG........eeteeee et e e e e e e e e e e e eeeeaaas 11
2.4.4 FUNCHON ADCSIOD .uttiiiiitiie ettt e e e e e e 11
2.4.5 Function ADCISINTEITUPLEAcoiueiiiiiie i 11
2.4.6 Function ADCResetInterrupted..........ouo i 12
2.4.7 FUNCHON CalCPEITYPE ...ttt 12
2.5 Pulse Width MOAUIATIONcooiiieeeeeee e e 12
2.5.1 Function PWMINit ... 12
2.5.2 FUNCHON PWMSHOP -.eetieiitiie ettt e e e neeeeeenee 13
2.5.3 FUNCHON PWMSEIVAIUB.......oiiiiieeeeeeeee et 13
2.6 e I T2 PR 13
2.6.1 FUNCHON FTA2INM ... e e e e e e e e e eeean 13
2.6.2 Function FT12SeNndooooiiiiiiie 14

P T T U1 o3 (o Il I 124 1= N 14
2.7 [T aT0 £ T 1= 15
2.7.1 FUNCHON HSINIE oottt e e e e e e e e e e e e e eeeeeanas 15
2.7.2 FUNCHON HSSEFIramMeueeeeieieeeeeeeeee e 15
2.7.3 FUNCHON HSGEtFIrameeeeieeeeeeeeeeeee e 16
2.8] d ISP SUPPPPRPPPPPPPRS 16
2.8.1 Function SPHNIt ... 16
2.8.2 FUNCHON SPISENG.... .ot e e e e e e e e e e eneaaaas 17
2.9 =T o 17
2.9.1 Function FIAShSEQETIASEc.ueiiiiiiiiiiiiii e 17
2.9.2 FUNCHON FIaSNWIE ...ttt e e e e e e e e e eeaaa 17
2.9.3 Function FlashlsBlockBlankK............cccccoooiiiiiiii 18
P2 O =Y = 0 1= (< PR 18
2.10.1 Function ParaminitValoeeeeeiiiieeeeee e 18
2.10.2 Function ParamBeadVal..........oooeeeiiiieeeeee e 19
P2 I B V1= TS o o ORI 19
2.11.1 FUNCLON MSGCIEALE ...ttt 19
2.11.2 FUNCtion MSGDISCArdcooiiiiieiie et 20
2.11.3 FUNCHON MSGGEL ..o 20

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 2 of 24

SIEMENS

2.11.4 FUNCLION MSGPOST ...
2.11.5 Function MSgUNAOGETuuiiiiiiiei e
2.11.6 Function MsgSWItChQUEUEueiieiiii e
2.11.7 Function MsgResetDYNQUEUEScoouuiiiiiiiiie et
2 2 111 /2SR
2.12.1 Function IsApplicationLoaded.........coooiiiiiiiiieeieeee e
2.12.2 FUuNnction GetPRYSAAAN........viiie i
2.12.3 Function GetSerialNUMDETcuuiiiiiiie et e e
2.12.4 Function ReadBCU2AAI 00cccuueiiiiiiiiie ettt
2.12.5 Function TriggerWatChDOgccuuiiiiiiiiii e
213 INEEITUPES it s
2.13.1 Function INtREGISTEN ...
2.13.2 FUNCtion INtUNFEQISTEN ...
2.13.3 Function INtRESELAIL ..o

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 3 of 24

SIEMENS

1 Introduction

This document describes the application programming interface for the Siemens Bus
Interface Modules BIM M130, BIM M131, BIM M132 and BIM M135.

To call any of the following functions write U._<function name>.

Example: if (U._TestObject(3) == TRUE) {...}

2 API-Reference

2.1 Debouncing
The following functions are used to debounce input pins of the BIM in software.

2.1.1 Function Debouncelnit

Prototype:
void DebounceInit (DEBOUNCEKIT* kit, USHORT initvalue)

Description:
This function initializes the structure DEBOUCEKIT. This is necessary before you can
call ‘Debounce’ for this DEBOUCEKIT.
Parameters:
DEBOUNCEKIT* kit:
A pointer to a structure of type DEBOUNCEKIT
USHORT initvalue:
The initial value of the debounced value in structure DEBOUNCEKIT
Return values:
none
Callable in / at:
init, main
Stack used: 18 bytes
Comment:

2.1.2 Function Debounce

Prototype:
void Debounce (USHORT sample, USHORT mask, DEBOUNCEKIT* kit,

USHORT debouncetime)
Description:
This function is used to debounce the result of the logical AND of ‘sample’ and
‘mask’. If the result has been unchanged for at least ‘debouncetime’, the new value is
stored in ‘kit’.
Parameters:
USHORT sample:
The actual value that should be debounced
USHORT mask:
Specifies the bits in sample that should be debounced
DEBOUNCEKIT* kit:
A pointer to a structure of type DEBOUNCEKIT
USHORT debouncetime:
The minimum number of ticks the value must remain unchanged. One tick is

equal to416.6 us.
Return values:
none
Callable in / at:

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 4 of 24

SIEMENS

main

Stack used: 22 bytes

Comment:
The mask must always be the same for a specific DEBOUNCEKIT.
The maximum debounce time is 10 seconds (24,000 ticks).

2.2 Object-Handling

The following functions are used to get and set flags on communication objects.

2.2.1 Function TestAndCopyObject

Prototype:
BOOL TestAndCopyObject (USHORT objectNr, void* dst, BYTE len)

Description:
This function tests if there was an update for an object given by ‘objectNr’. If this is
the case ‘len’ bytes of the object value are copied to ‘dst’.
Parameters:
USHORT objectNr:
The object number
void* dst:
A pointer to RAM where the object data should be copied
BYTE len:
The number of bytes that should be copied from the object data to ‘dst’
Return values:
true: there was an update and the object data was copied to 'dst’
false: there was no update
Callable in / at:
interrupts, main
Stack used: 24 bytes
Comment:
This function handles the lock of the task switch in the critical sections automatically.

2.2.2 Function SetAndTransmitObject

Prototype:
BOOL SetAndTransmitObject (USHORT objectNr, void* src, BYTE len)

Description:
Copies ‘len’ bytes from ‘src’ to the object data and sets the flags to transmit the
object specified by ‘objectNr’.
Parameters:
USHORT objectNr:
The object number
void* src:
A pointer to the new object value
BYTE len:
The number of bytes that should be copied to the object data before
transmitting
Return values:
true: the data was copied and the transmit flags are set
false: the operation could not be performed; that for example could be the case if the
specified object is still transmitting
Callable in / at:
interrupts, main
Stack used: 22 bytes
Comment:
The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All
rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 5 of 24

SIEMENS

This function handles the lock of the task switch in the critical sections automatically.

2.2.3 Function TestObject

Prototype:
BOOL TestObject (USHORT objectNr)

Description:

Tests if there was an update for the object specified by ‘objectNr’.
Parameters:

USHORT objectNr:

The object number

Return values:

true: there was an update

false: there was no update
Callable in / at:

interrupts, main
Stack used: 22 bytes
Comment:

2.2.4 Function TransmitObject

Prototype:
BOOL TransmitObject (USHORT objectNr)

Description:
This function sets the RAM flags to transmit the object specified by ‘objectNr’.
Parameters:
USHORT objectNr:
The object number
Return values:
true: the RAM flags were set successfully
false: the RAM flags were not set; that could be the case if the object is still
transmitting
Callable in / at:
interrupts, main
Stack used: 20 bytes
Comment:

2.2.5 Function ReadObject

Prototype:
BOOL ReadObject (USHORT objectNr)

Description:
Sets the RAM flags to generate a GroupValueRead on the object specified by
‘objectNr’.
Parameters:
USHORT objectNr:
The object number
Return values:
true: the RAM flags were set successfully
false: the RAM flags were not set; that could be the case if the object is still
transmitting
Callable in / at:
interrupts, main
Stack used: 14 bytes
Comment:
The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All
rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 6 of 24

SIEMENS

2.2.6 Function SetRAMFlags

Prototype:
BYTE SetRAMFlags (BYTE objectNr, BYTE flags)
Description:

Set the RAM flags for the object specified by ‘objectNr’. The high nibble of ‘flags’ acts
as mask where a logical one indicates that these flags should be modified for the
object specified by ‘objectNr’. The low nibble of ‘flags’ must contain the value for the
flags that should be modified. The low nibble of the return value is the actual value of
the RAM flags for this object.

To do a simple read of the RAM flags for one object, all bits in the high nibble of

‘flags’ must be zero.

Parameters:
BYTE objectNr:
The object number
BYTE flags:
The high nibble must contain the mask that specifies which flags should be
modified; the low nibble must contain the new values for the flags
Return values:
The flags for the specified object; stored in the low nibble of return value
Callable in / at:
interrupts, main
Stack used: 12 bytes
Comment:

2.3 Timer

The following functions can be used for working with time and timers managed by the BIM
operation system. The following figure shows the usage of the timer functions:

. TmStart() ,
TmlsExpired() = false > TmlsExpired() = false
TmlsRunning() = false TmStop() TmisRunning() = true
4—
A
Tminit() TmAddStart()
TmStart()
TmStop() TmlsExpired() = true timer has expired

&
<

TmlsRunning() = true

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 7 of 24

SIEMENS

2.3.1 Function GetSystemTime

Prototype:
ULONG GetSystemTime (void)

Description:
This function returns a 4 byte value that contains the ticks that are expired since the
last start up. One tick is equal t0416.6 us.
Parameters:
none
Return values:
The 4 byte value that contains the ticks
Callable in / at:
init, main
Stack used: 12 bytes
Comment:

2.3.2 Function Tmlinit

Prototype:
void TmInit (BYTE NumOfTimers)

Description:

This function initializes the timer table specified in the application info block. It sets

the number of timers and sets each timer to expired and stopped.
Parameters:

BYTE NumOfTimers:

The number of timers that are used in the application program

Return values:

none
Callable in / at:

init
Stack used: 8 bytes
Comment:

This function must be called before any other timer function is called.

2.3.3 Function TmStart

Prototype:
void TmStart (TIMER* pTimer, ULONG ticks)
Description:
Starts a timer specified by the pointer ‘pTimer’. The timer will be expired after ‘ticks’
measured from the point where ‘TmStart’ was called. Use ‘TmlsExpired’ to test
whether a timer is expired or not.
Parameters:
TIMER* pTimer:
A pointer to a timer that should be started
ULONG ticks:
The number of ticks the timer should run before it will be expired
Return values:
none
Callable in / at:
init, main
Stack used: 18 bytes
Comment:

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 8 of 24

SIEMENS

2.3.4 Function TmAddStart

Prototype:
void TmAddStart (TIMER* pTimer, ULONG ticks)

Description:
This function restarts a timer for the specified ‘ticks’ measured from the last
expiration of the timer. Use this function if you want to get timer intervals that do not
drift away from the real time like it would be if you use ‘TmStart’.
Parameters:
TIMER* pTimer:
A pointer to a timer that should be started
ULONG ticks:
The number of ticks the timer should run before it will be expired
Return values:
none
Callable in / at:
main
Stack used: 18 bytes
Comment:
Before a call of TmAddStart’ there must be at least one call of “TmStart’

2.3.5 Function TmisExpired

Prototype:
BOOL TmIsExpired(TIMER* pTimer)

Description:

Tests if the timer specified by the pointer ‘pTimer’ is expired or not. The timer remains

expired until the next call of ‘TmStart’, “TmAddStart’ or ‘TmStop’.
Parameters:

TIMER* pTimer:

A pointer to a timer that should be tested whether it is expired or not

Return values:

true: the timer is expired

false: the timer is not expired
Callable in / at:

interrupts, main, save
Stack used: 8 bytes
Comment:

2.3.6 Function TmilsRunning

Prototype:
BOOL TmIsRunning (TIMER* pTimer)

Description:

Tests if a timer is running. A timer is running if it is not expired and not stopped.
Parameters:

TIMER* pTimer:

A pointer to a timer that should be tested whether it is running or not

Return values:

true: the timer is running

false: the timer is not running
Callable in / at:

interrupts, main, save
Stack used: 8 bytes
Comment:

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 9 of 24

SIEMENS

2.3.7 Function TmStop

Prototype:
void TmStop (TIMER* pTimer)

Description:

Stops a timer given by the pointer ‘pTimer’.
Parameters:

TIMER* pTimer:

A pointer to a timer that should be stopped

Return values:

none
Callable in / at:

interrupts, main
Stack used: 8 bytes
Comment:

2.4 AD converter
The following functions are used to control the AD converter of the BIM.

2.4.1 Function ADCInit

Prototype:

void ADCInit (ADCSpeedModeType speed)
Description:

Inits the AD converter and sets the speed specified by the parameter ‘speed’.
Parameters:

ADCSpeedModeType speed:

The conversion speed of the AD converter

Return values:

none
Callable in / at:

init, main
Stack used: 8 bytes
Comment:

2.4.2 Function ADCShutdown

Prototype:
void ADCShutdown (void)

Description:
Disables the AD converter.
Parameters:
none
Return values:
none
Callable in / at:
interrupts, init, main, save, unload
Stack used: 8 bytes
Comment:
After ADCShutdown a new call of ‘ADCInit’ is necessary before ‘ADCRead’ can be
called again.

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 10 of 24

SIEMENS

2.4.3 Function ADCRead

Prototype:
USHORT ADCRead (BYTE port, BYTE ADCcount)

Description:
Returns the accumulated AD converter value of the specified ‘port’; divide the return
value through ‘ADCcount’ to get the average value.
Parameters:
BYTE port:
The ad converter channel that should be converted
BYTE ADCcount:
The number of conversions that should be accumulated
Return values:
The sum of the values of all read operations
Callable in / at:
init, main
Stack used: 8 bytes
Comment:

2.4.4 Function ADCStop

Prototype:
void ADCStop (void)

Description:
Stops the AD converter.
Parameters:
none
Return values:
none
Callable in / at:
interrupts, main
Stack used: 8 bytes
Comment:
After a call of ‘ADCStop’ you can call ‘ADCRead’ without a new call of ‘ADClInit’.

2.4.5 Function ADClsInterrupted

Prototype:
BOOL ADCIsInterrupted(void)

Description:

If you manually control the AD converter you have to call this function, because the
system is able to stop the ad converter to save current (this is done if a flash write
operation is necessary). If ‘ADCGetlnterrupted’ returns ‘true’ call
‘ADCResetinterrupted’ and do the AD conversion again.

Parameters:
none
Return values:
true: last AD conversion was interrupted
false: last AD conversion ends without interruption
Callable in / at:
main
Stack used: 8 bytes
Comment:

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 11 of 24

SIEMENS

2.4.6 Function ADCResetinterrupted

Prototype:
void ADCResetInterrupted(void)

Description:
Resets the flag that indicates that an AD conversion was stopped by the system
Parameters:
none
Return values:
none
Callable in / at:
main
Stack used: 8 bytes
Comment:

2.4.7 Function CalcPEIType

Prototype:
BYTE CalcPEIType (BYTE adval)

Description:
This function can be used to calculate the PEI type that corresponds to the given AD
converter value.
Parameters:
BYTE adval:
The measured AD converter value
Return values:
none
Callable in / at:
init, main
Stack used: 8 bytes
Comment:

2.5 Pulse width modulation
The following functions are used to control to pulse width modulation output of the BIM.

2.5.1 Function PWMInit

Prototype:
void PWMInit (PWMChannelType channel, PWMPolType mode,

PWMSpeedModeType speed)
Description:
Inits the pulse width modulation output for the specified channel. Select the polarity
via ‘mode’ and a speed via ‘speed’.
Parameters:
PWMChannelType channel:
One of the two available pwm channels
PWMPolType mode:
The polarity of the generated pwm signal
PWMSpeedModeType speed:
The speed of the pwm signal
Return values:
none
Callable in / at:
interrupts, init, main, save
The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All
rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 12 of 24

SIEMENS

Stack used: 8 bytes
Comment:

2.5.2 Function PWMStop

Prototype:

void PWMStop (PWMChannelType channel)
Description:

This function stops the pulse width modulation for the specified channel.
Parameters:

PWMChannelType channel:

The pwm channel that should be stopped

Return values:

none
Callable in / at:

interrupts, init, main, save, unload
Stack used: 8 bytes
Comment:

2.5.3 Function PWMSetValue

Prototype:
void PWMSetValue (PWMChannelType channel, BYTE value)

Description:
This function sets a new value to the pulse width modulation for the specified
channel.
Parameters:
PWMChannelType channel:
The pwm channel whose value should be updated
BYTE value:
The new value for the selected pwm channel
Return values:
none
Callable in / at:
interrupts, init, main, save
Stack used: 8 bytes
Comment:

26 FT12

The following functions are used to send and receive FT12 frames over UARTO of the bim.

2.6.1 Function FT12Init

Prototype:
void FT12Init (USHORT TimeoutTime, BYTE len, BYTE* rcvBuffer,

BYTE* trmBuffer, BYTE baud, BYTE config)
Description:

This function is used to initialize the driver for sending and receiving FT12 frames

over UARTO. It must be called before any other function of FT12 is called.
Parameters:

USHORT TimeoutTime:

The time out time for the FT12 acknowledge
BYTE len:

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 13 of 24

SIEMENS

The size of the transmit and receive buffer
BYTE* rcvBuffer:
A pointer to a receive buffer
BYTE* trmBuffer:
A pointer to a transmit buffer
BYTE baud:
The baud rate; the possible values can be looked up in the NEC78KO0 / KE2
datasheet
BYTE config:
The configuration of the FT12 UART; the possible configurations can be
looked up in the NEC78KO0 / KE2 datasheet
Return values:
none
Callable in / at:
init
Stack used: 18 bytes
Comment:

2.6.2 Function FT12Send

Prototype:
BOOL FT12Send(BYTE* src, BYTE len, BYTE* result)

Description:
Copies ‘len’ bytes from ‘src’ to the send buffer if it is empty. After sending the result is
stored in ‘result’.
Parameters:
BYTE* src:
A pointer to data that should be transmitted
BYTE len:
The number of bytes that should be transmitted
BYTE* result:
A pointer to a byte where the result of the FT12 transmit will be stored
Return values:
true: the data was copied to send buffer
false: the send buffer was not free, so no data has been copied
Callable in / at:
main
Stack used: 8 bytes
Comment:

2.6.3 Function FT12Get

Prototype:
BOOL FT12Get (BYTE* dst, BYTE* len)

Description:
Tests if there was a frame received over FT12. If this is the case the received data is
copied to ‘dst’ and the length is written to ‘len’.
Parameters:
BYTE* dst:
A pointer to a data buffer where the received data should be copied
BYTE* len:
A pointer to a byte where the number of copied bytes is written
Return values:
true: there was a frame received over FT12 and the data has been copied to ‘dst’

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 14 of 24

SIEMENS

false: no data was received over FT12
Callable in / at:

main
Stack used: 8 bytes
Comment:

2.7 Handshake

The following functions are used to send and receive frames via handshake protocol. It is not
recommend using these functions for new implementations.

2.7.1 Function HSInit

Prototype:
void HSInit (USHORT TimeoutTime, BYTE len, BYTE* rcvBuffer,

BYTE* trmBuffer, BYTE baud, BYTE config)
Description:
This function is used to initialize the driver for sending and receiving frames with
handshake flow control over UARTO.
Parameters:
USHORT TimeoutTime:
The time in between a send operation must be completed
BYTE len:
The size of the transmit and receive buffer
BYTE* rcvBuffer:
A pointer to a receive buffer
BYTE* trmBuffer:
A pointer to a transmit buffer
BYTE baud:
The baud rate; the possible values must be looked up in the NEC78K0 / KE2
datasheet
BYTE config:
The configuration of the FT12 uart; the possible configurations must be looked
up in the NEC78K0 / KE2 datasheet
Return values:
none
Callable in / at:
init
Stack used: 14 bytes
Comment:
It is not recommended using this function for new implementations.

2.7.2 Function HSSetFrame

Prototype:
BOOL HSSetFrame (BYTE* src, BYTE len, BYTE* result)
Description:
Copies ‘len’ bytes from ‘src’ to the send buffer if it is empty. After sending the result is
stored in ‘result’.
Parameters:
BYTE* src:
A pointer to data that should be transmitted
BYTE len:
The number of bytes that should be transmitted
BYTE* result:
The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All
rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 15 of 24

SIEMENS

A pointer to a byte where the result of the send operation is stored

Return values:

true: the data was copied to send buffer

false: the send buffer was not free, so no data has been copied
Callable in / at:

main
Stack used: 8 bytes
Comment:

It is not recommended using this function for new implementations.

2.7.3 Function HSGetFrame

Prototype:
BOOL HSGetFrame (BYTE* dst, BYTE* len)

Description:
Tests if there was a frame received over FT12. If this is the case the received data is
copied to ‘dst’ and the length is written to ‘len’.
Parameters:
BYTE* dst:
A pointer to a buffer where the received bytes should be copied
BYTE* len:
A pointer to a byte where the number of copied bytes will be written
Return values:
true: there was a frame received and the data has been copied to ‘dst’
false: no data was received
Callable in / at:
main
Stack used: 8 bytes
Comment:
It is not recommended using this function for new implementations.

2.8 SPI

2.8.1 Function SPIInit

Prototype:
void SPIInit (enum SPISpeed speed, BYTE CKPDAP, BOOL MSBFirst)

Description:
This function is used to initialize the driver for transmitting data over SPI.
Parameters:
enum SPISpeed speed:
The speed of the SPI communication
BYTE CKPDAP:
value: 0x00: clock is idle high, data is valid if clock is high
value: 0x01: clock is idle high, data is valid if clock is low
value: 0x02: clock is idle low, data is valid if clock is low
value: 0x03: clock is idle low, data is valid if clock is high
BOOL MSBFirst:
Specifies whether the data bytes are transmitted with msb first or Isb first
Return values:
none
Callable in / at:
init, main
Stack used: 8 bytes
Comment:
The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All
rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 16 of 24

SIEMENS

2.8.2 Function SPISend

Prototype:
BOOL SPISend(BYTE* pData, BYTE length)
Description:
This function is used to transmit ‘legth’ bytes from ‘pData’ over SPI. The received data
overwrites the data in ‘pData’.
Parameters:
BYTE* pData:
A pointer to data that should be transmitted and where the received data is
stored
BYTE length:
The number of bytes that should be exchanged over SPI
Return values:
true: the SPI data exchange was successful
false: the SPI data exchange was not successful
Callable in / at:
interrupts, init, main, save, unload
Stack used: 8 bytes
Comment:

2.9 Flash

The following functions are used to write data to the flash memory of the BIM.

2.9.1 Function FlashSegErase

Prototype:
BOOL FlashSegErase (ULONG dst)

Description:
This function is used to erase a segment in flash memory where ‘dst’ is in.
Parameters:
ULONG dst:
Specifies which flash segment should be erased. The address has not to be
the start address of the flash segment.
Return values:
true: the segment was successful erased
false: the erase operation could not be done; this is normally the case if ‘dst’ is not
o.k.
Callable in / at:
main, save
Stack used: 8 bytes
Comment:
After a call of this function the system performs a task switch and the application
program is called again when the flash erase operation has been completed.

2.9.2 Function FlashWrite

Prototype:
BOOL FlashWrite (ULONG dst, void* src, BYTE count)
Description:
This function writes ‘count’ bytes from ‘src’ to ‘dst’ in flash. The ‘dst’ flash memory
must be blank flash space.
Parameters:
The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All
rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 17 of 24

SIEMENS

ULONG dst:
The destination address as a four byte value where the data should be written;
the flash space where ‘dst’ points to must be blank flash and ‘dst’ must be
aligned to a four byte address.
void* src:
A pointer to data that should be written to flash
BYTE count:
The number of bytes that should be written
Return values:
true: the data has been written to flash
false: the data has not been written to flash; this could be the case if the address is
not o.k.
Callable in / at:
main, save
Stack used: 8 bytes
Comment:
The maximum value for ‘count’ is 124. After a call of this function the system performs
a task switch and the application program is called again when the flash write
operation has been completed.

2.9.3 Function FlashisBlockBlank

Prototype:
BOOL FlashIsBlockBlank (BYTE* pVal, USHORT count)

Description:
Tests if a block of bytes in flash memory is blank.
Parameters:
BYTE* pVal:
The start address of the block
USHORT count:
The number of bytes that should be tested
Return values:
true: the specified block is blank
false: the specified block is not blank
Callable in / at:
interrupts, init, main, save, unload
Stack used: 8 bytes
Comment:

2.10 Parameter

The following functions are used to initialize and read parameter values that are used for
properties in the application program

2.10.1 Function ParaminitVal

Prototype:
BOOL ParamInitVal (BYTE* src, BYTE ValID, BYTE VallLength)

Description:
If you use parameter management you can use this function to set an initial value for
a parameter value specified by ‘VallD’. The value is only written in the parameter
management if it does not already exists.
Parameters:
BYTE* src:
A pointer to data that should be written to the specified parameter value

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 18 of 24

SIEMENS

BYTE VallD:
The ID that identifies the value
BYTE ValLength:
The size of the value in bytes
Return values:
true: operation was successful
false: operation was not successful
Callable in / at:
init
Stack used: 8 bytes
Comment:

2.10.2 Function ParamReadVal

Prototype:
BOOL ParamReadVal (BYTE ValID, void* dst, BYTE len)

Description:
Reads a value specified by ‘VallD’ from the parameter management and copies ‘len
bytes to ‘dst’.
Parameters:
BYTE VallD:
The ID that identifies the value
void* dst:
A pointer to a buffer in RAM where the data of the specified parameter value
should be copied
BYTE len:
The number of bytes that should be copied
Return values:
true: the data of the specified parameter value was copied to ‘dst’
false: an error occurred; this could be the case when the specified parameter value
was not found
Callable in / at:
main
Stack used: 26 bytes
Comment:

’

2.11 Message

The following functions are used the work with system messages.

2.11.1 Function MsgCreate

Prototype:
MESSAGE* MsgCreate (void)

Description:
This function tries to get a message from the message pool and returns a pointer to
the free message.
Parameters:
none
Return values:
A pointer to the message; if there was no free message, the return value is NULL.
Callable in / at:
main
Stack used: 12 bytes

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 19 of 24

SIEMENS

Comment:

2.11.2 Function MsgDiscard

Prototype:
void MsgDiscard (MESSAGE* pMsg)

Description:

This function posts a message back to the message pool.
Parameters:

MESSAGE* pMsg:

A pointer to the message that should be discarded

Return values:

none
Callable in / at:

main, unload
Stack used: 10 bytes
Comment:

2.11.3 Function MsgGet

Prototype:
MESSAGE* MsgGet (MESSAGEQUEUE* pQueue)

Description:

This function returns the next message from the specified message queue.
Parameters:

MESSAGEQUEUE* pQueue:

A pointer to the queue from where a message should be put out

Return values:

A pointer to the message that was put out from the queue; if there was no message in

the queue the return value is NULL.
Callable in / at:

interrupts, init, main, save, unload
Stack used: 10 bytes
Comment:

2.11.4 Function MsgPost

Prototype:
void MsgPost (MESSAGE* pMsg, MESSAGEQUEUE* pQueue)

Description:
This function posts a message specified by pMsg to the specified message queue.
Parameters:
MESSAGE* pMsg:
A pointer to the message that should be posted in the specified queue
MESSAGEQUEUE* pQueue:
A pointer to the message queue where the specified message should be
posted
Return values:
none
Callable in / at:
main, unload
Stack used: 8 bytes
Comment:

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 20 of 24

SIEMENS

2.11.5 Function MsgUndoGet

Prototype:
void MsgUndoGet (MESSAGE* pMsg, MESSAGEQUEUE* pQueue)

Description:
This function puts a message witch was put out from a message queue via ‘MsgGet’
back in the specified queue.
Parameters:
MESSAGE* pMsg:
A pointer to the message that should be put back in the specified message
queue
MESSAGEQUEUE* pQueue:
A pointer to the message queue where the message should be put back
Return values:
none
Callable in / at:
main
Stack used: 8 bytes
Comment:

2.11.6 Function MsgSwitchQueue

Prototype:
void MsgSwitchQueue (DYNMESSAGEQUEUE* dyng, MESSAGEQUEUEX*

staticq)
Description:
This function can be used to redirect a message. After a call of this function a
message that is posted to ‘dynq’ will be posted to ‘staticq’.
Parameters:
DYNMESSAGEQUEUE* dyng:
A pointer to a dynamic message queue whose messages should be redirected
MESSAGEQUEUE* staticq:
A pointer to a static message queue where the redirected messages should
be put in
Return values:
none
Callable in / at:
init, main
Stack used: 8 bytes
Comment:

2.11.7 Function MsgResetDynQueues
Prototype:

void MsgResetDynQueues (void)
Description:
Use this function to restore the original system message redirection system.
Parameters:
none
Return values:
none
Callable in / at:
Main, unload
Stack used: 8 bytes
Comment:
The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All
rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 21 of 24

SIEMENS

2.12 Utility

The following functions are useful utilities.

2.12.1 Function IsApplicationLoaded

Prototype:
BOOL IsApplicationLoaded(void)

Description:
This function indicates if the application is loaded.
Parameters:
none
Return values:
true: the application is loaded
false: the application is not loaded
Callable in / at:
init, main
Stack used: 8 bytes
Comment:

2.12.2 Function GetPhysAddr

Prototype:
void GetPhysAddr (BYTE* dst)

Description:
Use this function to read the physical address of this device.
Parameters:
BYTE* dst:
A pointer to a buffer with at least 2 bytes in RAM where the actual physical
address of the device will be copied
Return values:
none
Callable in / at:
main
Stack used: 8 bytes
Comment:

2.12.3 Function GetSerialNumber

Prototype:
void GetSerialNumber (BYTE* dst)

Description:
Use this function to read the serial number of this device.
Parameters:
BYTE* dst:
A pointer to a buffer with at least 6 bytes in RAM where the actual serial
number of the device will be copied
Return values:
none
Callable in / at:
main
Stack used: 26 bytes

Comment:

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 22 of 24

SIEMENS

2.12.4 Function ReadBCU2Adr100

Prototype:
BOOL ReadBCU2Adrl100 (BYTE offset, BYTE count, void* dst)

Description:
Use this function to copy ‘count’ bytes to ‘dst’ from the simulated address 0x0100
from the bcu 2.
Parameters:
BYTE offset:
The offset starting from address 0x0100
BYTE count:
The number of bytes that should be copied
void* dst:
A pointer to a buffer in RAM where the data will be copied
Return values:
true: the read operation was successful
false: an error occurred; this would be the case if something is wrong with the
parameters
Callable in / at:
main
Stack used: 26 bytes
Comment:

2.12.5 Function TriggerWatchDog

Prototype:
void TriggerWatchDog (void)

Description:
Call this function cyclic to retrigger the user application watchdog.
Parameters:
none
Return values:
none
Callable in / at:
interrupts, init, main, save, unload
Stack used: 8 bytes
Comment:
The watchdog time for the application watchdog is configured in application info
block.

2.13 Interrupts

The interrupt functions enable the application programmer to use some interrupts of the BIM
M 13x microcontroller. The maximum execution time for an interrupt handling routine in the
application program must not exceed 100usec! The following interrupt vector addresses
could be used and are defines in the header file io78f053x_64.h" which is already included in
‘BIM_M13x.h’:

INTP4_vect INTKR_vect
INTSTO_vect INTSRO_vect
INTTMOOO_vect INTTMO10_vect

INTTM51_vect
INTCSI11_vect

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 23 of 24

SIEMENS

2.13.1 Function IntRegister

Prototype:
void IntRegister (pIntFunc func, BYTE IntAddr)

Description:
This function is used to register interrupt service routines for the application program.
Parameters:
pIntFunc func:
A pointer to the function that will handle the specified interrupt
BYTE IntAddr:
One of the allowed interrupt vector addresses that should be handled by the
specified function
Return values:
none
Callable in / at:
init, main
Stack used: 8 bytes
Comment:
The maximum execution time for an interrupt handling routine in the application
program must not exceed 100pusec.

2.13.2 Function IntUnregister

Prototype:
void IntUnregister (BYTE IntAddr)

Description:
Use this function to unregister a interrupt service routine.
Parameters:
BYTE IntAddr:
The interrupt vector address that will not longer be handled by the user
application
Return values:
none
Callable in / at:
main, unload
Stack used: 8 bytes
Comment:

2.13.3 Function IntResetAll

Prototype:
void IntResetAll (void)

Description:
This function unregisters all interrupts that could be registered from user application
Parameters:
void
Return values:
none
Callable in / at:
main, unload
Stack used: 8 bytes
Comment:

The reproduction, transmission or use of this document or its contents is not permitted without express written approval. All

rights, including right created by patent grant or registration of a utility model or design, are reserved. Technical changes

reserved. © Siemens AG 2007
11.07.2008 Page 24 of 24

